

deal combination of power and multiple-function.

Dynamic torque-vector controtpromises

optimum motor control under anv-operating conditions.

1. Dynamic torque-vector control

Dynamic torque-vector control system performs high-speed calculation to determine the required motor power for the load status. Our key technology is optimal control of voltage and current vectors for maximum output torque.

A high starting torque of 200% at 0.5 Hz .* * 180\% for 40HP or larger models.

- Achieves smooth acceleration/ deceleration in the shortest time for the load condition.
Using a high-speed CPU quickly responds to an abrupt load change, detects the regenerated power to control the deceleration time. This automatic decerelation function greatly reduces the inverter tripping.
- Feedback control with PG

Enables the inverter to execute "vector control with PG" by adding an optional PG feedback card to obtain higher performance.

- Speed control range : 1:1200
- Speed control accuracy : $\pm 0.02 \%$
- Speed control response : 40Hz

2. Reduced motor wow at low speed

Motor wow at low speed $(1 \mathrm{~Hz})$ reduced to less than $1 / 2$ of that achieved by conventional inverters, with the dynamic torque-vector control system, in combination with the Fuji's unique digital AVR.

Wow characterisics(Sample: 5HP)

3. New on-line tuning system

On-line tuning to continuously check for variation of motor characteristics during running for high-precision speed control.

- This tuning function also available for a second motor, which allows high-precision driving of the second motor by changeover operation between two motors.

FRENIC 5000P11

- Provided with low-noise control power supply systems which minimize noise interference on peripheral devices such as sensors.
- Equipped with terminals for connecting DC REACTOR that can suppress harmonics.

- Complied with EMC Directive (Emission) when connected to optional EMCcompliance filter.

5. Advanced, convenient functions

2

- 16-step speed with timer control, rotating motor pick-up control for conveyance machinery
- Automatic energy-saving operation, PID control, cooling fan on/off control, line/ inverter changeover operation for fans and pumps
- Rotating motor pick-up control:

Restarts motor without any shocks, by detecting motor speed where motor is coasting after momentary power failure occurs.

- Automatic energy-saving operation function: Minimizes inverter and motor loss at light load.

6. Global products, communication

Q

- Conforms to major world safety standards: UL, cUL, TÜV (up to 30HP), EN (CE marking)Equipped with RS-485 interface as standard.
- Connection to field bus: PROFIBUS-DP, InterbusS, DeviceNet, Modbus Plus (Option)
- Universal DI/DO : Monitors digital I/O signal status and transmits to a host controller, helping to simplify factory automation.

[^0]
7. Intelligent Keypad panel

- Copy function: Easily copies function codes and data to other inverters.
- Six languages (English, French, German, Italian, Spanish, and Japanese) are available as standard.
- Jogging (inching) operation from the Keypad or external signal
- Remote operation using optional extension cable (CBIII-10R- $\square \square \square$)

8. Protective functions, Maintenance

Protection

- Motors with various characteristics can be used by setting thermal time constant for the electronic thermal overload protection.
- Input phase loss protective function protects the inverter from damage caused by disconnection of power supply lines.
- Motor is protected with a PTC thermistor.
- Input terminals for auxiliary control power supply (2HP or larger models) : Alarm signal output will be held even if main circuit power supply has shut down.

Excellent maintainability

The items below can be monitored on the Keypad panel and making it easy to analyze the cause of trip and to take preventive measures.

- Input/output terminals check
- Life expectancy of main-circuit capacitors
- Inverter on-load factor
- Accumlated operation time
- Inverter operating condition (output current, heat sink temperature, input power, etc.)
- Detailed data on trip cause

9. Extensive product line

- Two series are available: G11S series ranging from $1 / 4$ to 600 HP for general industrial machines and P 11 S series ranging from 7.5 to 800HP for fans and pumps.
- Totally-enclosed casing (NEMA1) (up to 30HP as standard).
- Optional NEMA1 enclosure available for 40HP or larger models.

10. Other useful functions

- Side-by-side mounting (up to 30HP) saves space when inverters are installed in a panel.
- The uniform height (10.24inch $(260 \mathrm{~mm})$) of products (up to 10HP) makes it easy to design panels.
- User-definable control terminals: Digital input (9 points), transistor output (4points), and relay contact output (1point).
- Active drive feature: Performs prolonged acceleration at reduced torque, monitoring the load status to prevent tripping.
- Stall prevention function is provided as standard. Active or inactive can be also selected.

* The above graph shows an example of torque characteristics when combining FRENIC5000G11S (up to 30 HP at dynamic torque-vector control) with Fuji standard three-phase motor (8-type series, 4 poles). Continuous operation torque is for limits of allowable load torque for using the motor within the allowable temperature range and is not for motor output torque.
The motor output torque is shown by the short-time operation torque.

Variation

Easy to apply to customer systems. A consistent design concept in all models from 1/4HP to 800HP.

How to read the model number

FRENIC 5000G1 industrial plant

Fans

- Air-conditioning system (for factory, building, office, hospital, clean room, shop, and cattle barn)
- Dryer
- Boiler fan
- Fans for controlling furnace temperature
- Roof fans controlled as a group
- Refrigerator
- Compressor
- Built-in blower in a filmmanufacturing machine
- Cooling-tower fans
- Ventilating fans
- Air-conditioning equipment

Food processing machines

- Food mixing machine
- Food slicer
- Grain milling machine (bread, cake, noodles)
- Tea making machine
- Rice cleaning machine

1S/P11S can be used for almost all and equipment areas.

Machine tools
- Grinding machine
- Sanding machine
- Milling machine
- Lathe
- Drilling machine
- Turntable
- Work positioning machine
- PC board drilling machine
- Winding machine
- Press

Chemical machinery/wood working machines

- Fluid mixing machine
- Extruder
- Vibrator
- Centrifugal separator
- Coating machine
- Take-up roller
- Routing machine
- Sanding machine
- Planing machine

Electric pumps

- Tankless water supply system
- Submersible motor pump
- Vacuum pump
- Fountain pump
- Cooling water pump
- Circulating hot water pump
- Well pump
- Agricultural storage pump
- Water treatment system
- Constant-flow pump
- Sludge pump

Packaging machinery

- Individual packaging/innerpackaging machine
- Packing machine
- Outer-packaging machine

Paper making/ textile machinery

- Spinning machine
- Knitting machine
- Textile printing machine
- Industrial sewing machine
- Synthetic fiber manufacturing plant

Other machinery

- Automated feed/medicine mixer
- Commercial-use washing machine
- Offset printing press
- Book-binding machine
- Car-washing machine
- Shredder
- Dishwasher
- Test equipment
- Crusher

Standard Specifications

FRENIC5000G11S 230V, for general industrial machines

FRENIC5000G11S 460V, for general industrial machines

[^1] voltage. *3) Current derating may be required in case of low impedance loads such as high frequency motor. *4) When the inp ut voltage is $380 \mathrm{~V} / 50 \mathrm{~Hz}$ or $380 \mathrm{to} 415 \mathrm{~V} / 60 \mathrm{~Hz}$, the tap of the auxiliary transformer must be changed. *5) Order individually. *6) Refer to the IEC 61800-3(5.2.3). *7) Tested a t standard load condition (85\% load). *8) This value is under FUJI original calculation method. (Refer to the Technical Information.) *9) When power-factor correcting DC reactor is used. *10) With a nominal applied motor, this value is average torque when the motor decelerates and stops from 60 Hz . (It may change according to motor loss.)

FRENIC5000P11S 230V, for fans and pumps

Type FRN Nominal applied motor P11S-2UX		007	010	015	020	025	030	040	050	060	075	100	125	150							
		7.5	10	15	20	25	30	40	50	60	75	100	125	150							
Output ratings	Rated capacity *1) kVA	8.8	12	17	22	27	31	46	58	72	86	113	138	165							
	Rated voltage *2)	3-phase $200 \mathrm{~V} / 50 \mathrm{~Hz} 200,220 \mathrm{~V}, 230 \mathrm{~V} / 60 \mathrm{~Hz}$																			
	Rated current *3)	22	29	42	55	67	78	115	145	180	215	283	346	415							
	Overload capability	110% of rated current for 1 min																			
	Rated frequency Phases, Voltage, Frequency	50, 60Hz																			
Input ratings		3 -phase 200 to $230 \mathrm{~V} 50 / 60 \mathrm{~Hz}$						3 -phase 200 to $220 \mathrm{~V} / 50 \mathrm{~Hz}\left(220\right.$ to $230 \mathrm{~V} / 5 \mathrm{OHz}$) ${ }^{5}$) 200 to $230 \mathrm{~V} / 6 \mathrm{OHz}$													
	Phases, Voltage, Frequency Voltage / frequency variations	Voltage : +10 to -15% (Voltage unbalance *6) : 2% or less) Frequency : +5 to -5%																			
	Momentary voltage dip capability *7)	When the input voltage is 165 V or more, the inverter can be operated continuously. When the input voltage drops below 165 V from rated voltage, the inverter can be operated for 15 ms The smooth recovery method is selectable.																			
	Rated current *8) (with DCR) A (without DCR)		$\begin{aligned} & \hline 26.9 \\ & \hline 52.6 \\ & \hline \end{aligned}$	$\begin{array}{r} 39.0 \\ \hline 76.9 \\ \hline \end{array}$	$\begin{aligned} & 54.0 \\ & 98.5 \end{aligned}$	$\begin{gathered} \hline 66.2 \\ \hline 117 \\ \hline \end{gathered}$	78.8136	$\begin{aligned} & 109 \\ & \hline 168 \\ & \hline \end{aligned}$	135	$\begin{array}{r} \hline 163 \\ \hline 243 \\ \hline \end{array}$	199 272		327	400							
									204		291	-	-	-							
	Required power supply capacity) \quad kVA	6.9	9.4	14	19	23	28	38	47	57	69	95	114	139							
Control	Starting torque	50\%																			
Braking		20\%						10 to 15\%													
		$\begin{array}{r}\text { No limit } \\ \text { No limit } \\ \hline\end{array}$																			
	Braking torque (Using options)	100\%							70\%												
	DC injection braking	Starting frequency: 0.1 to $60.0 \mathrm{~Hz} \quad$ Braking time: 0.0 to 30.0 s							Braking level: 0 to 80% of rated current												
Enclosure (IEC 60529)		IP 40 (NEMA1)						IP 00 (NEMA1 : Option)													
Cooling method		Fan cooling																			
Standards		-UL/CUL -Low Voltage Directive -EMC Directive TÜV (up to 30HP) -IEC 61800-2 (Ratings, specifications for low voltage adjustable frequency a.c. power drive systems) -IEC 61800-3 (EMC product standard including specific test methods)																			
Weight $\quad \mathrm{lbs}(\mathrm{kg})$		$\begin{aligned} & 12.6 \\ & (5.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 12.6 \\ & \text { (5.7) } \end{aligned}$	$\begin{aligned} & 12.6 \\ & (5.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 22 \\ & (10) \\ & \hline \end{aligned}$	$\begin{aligned} & 22 \\ & (10) \\ & \hline \end{aligned}$	$\begin{array}{r} 23.1 \\ (10.5) \\ \hline \end{array}$	$\begin{aligned} & 63.9 \\ & (29) \\ & \hline \end{aligned}$	$\begin{aligned} & 63.9 \\ & \hline 639 \\ & \hline \end{aligned}$	$\begin{aligned} & 79.4 \\ & (36) \\ & \hline \end{aligned}$	$\begin{gathered} 97 \\ (44) \\ \hline \end{gathered}$	$\begin{aligned} & 101.4 \\ & (46) \end{aligned}$	$\begin{aligned} & 154.3 \\ & (70) \\ & \hline \end{aligned}$	$\begin{aligned} & 253.5 \\ & (115) \\ & \hline \end{aligned}$							

FRENIC5000P11S 460V, for fans and pumps

[^2]
Common Specifications

Note: (*) Option *1) Inverter may automatically reduce carrier frequency, in accordance with ambient temperature or output current for protecting inverter.

Item		Explanation	
Indication	Operation mode (Running)	LED monitor	LCD monitor (Japanese, English, German, French, Spanish, Italian)
		- Output frequency 1 (Before slip compensation) (Hz) - Output frequency 2 (After slip compensation) (Hz) - Setting frequency (Hz) - Output current (A) - Output voltage (V) - Motor synchronous speed (r/min) - Line speed ($\mathrm{m} / \mathrm{min}$) - Load shaft speed (r/min) - Torque calculation value (\%) - Input power (kW) - PID reference value - PID reference value (remote) - PID feedback value - Trip history :Cause of trip by code (Even when main power supply is off, trip history data of the last 4 trips are retained.)	Operation monitor \& Alarm monitor Operation monitor - Displays operation guidance - Bargraph: Output frequency (\%), Output current (A), Output torque (\%) Alarm monitor - The alarm data is displayed when the inverter trips. Function setting \& monitor Function setting Displays function codes and its data or data code, and changes the data value.
	Stopping	Selected setting value or output value	,
	Trip mode	Displays the cause of trip by codes as follows. - OC1 (Overcurrent during acceleration) - OC2 (Overcurrent during deceleration) - OC3 (Overcurrent during running at constant speed) - EF (Ground fault) - Lin (Input phase loss) - FUS (Fuse blown) - OU1 (Overvoltage during acceleration) - OU2 (Overvoltage during deceleration) - OU3 (Overvoltage running at constant speed) - LU (Undervoltage) - OH1 (Overheating at heat sink) - OH2 (External thermal relay tripped) - OH3 (Overtemperature at inside air) - dBH (Overheating at DB circuit) - OL1 (Motor 1 overload) - OL2 (Motor 2 overload) - OLU (Inverter unit overload) - OS (Overspeed) - PG (PG error) - Er1 (Memory error) - Er2 (KEYPAD panel communication error) - Er3 (CPU error) - Er4 (Option error) - Er5 (Option error) - Er6 (Operation procedure error) - Er7 (Output phase loss error, impedance imbalance) - Er7. (Charging circuit alarm, 40HP or larger) - Er8 (RS-485 error)	- Output frequency (Hz) - Output current (A) - Output voltage (V) - Torque calculation value (\%) - Setting frequency (Hz) - Operation condition (FWD / REV, IL, VL / LU, TL) - Motor synchronous speed (r/min) - Load shaft speed (r/min) - Line speed ($\mathrm{m} / \mathrm{min}$) - PID reference value - PID feedback value - Driving torque limiter setting vaiue (\%) - Braking togue limiter setting value (\%) Tester function (l/O check) - Digital I/O : ■ (ON), \square (OFF) - Analog I/O: (V), (mA), (H), (p/s) Maintenance data - Operation time (h) - DC link circuit voltage (V) - Temperature at inside air $\left({ }^{\circ} \mathrm{C}\right)$ - Temperature at heat sink $\left({ }^{\circ} \mathrm{C}\right)$ - Maximum current (A) - Main circuit capacitor life(\%) - Control PC board life (h) Load factor calculation - Measurement time (s) - Average current (A) - Maximum current (A) - Average braking power (\%) Alarm data - Output frequency (Hz) - Temperature at inside air $\left({ }^{\circ} \mathrm{C}\right)$ - Output current (A) - Hest sink temperature $\left({ }^{\circ} \mathrm{C}\right)$ - Output voltage (V) - Communication error times - Torque calculation value (\%) (KEYPAD,RS-485, Option) - Setting frequency (Hz) - Digital input terminal condition - Operation condition (Remote, Communication) (FWD / REV, IL, VL / LU, TL) - Transistor output terminal condition - Operation time (h) - Trip history code - DC link circuit voltage (V) - Multiple alram exist
	Charge lamp	When the DC link circuit voltage is higher than 50 V , the charge lamp is ON.	
Protection	Overload	Protects the inverter by electronic thermal overload function and by detection of inverter temperature.	
	Overvoltage	Detects DC link circuit overvoltage,and stops the inverter. ($460 \mathrm{~V}: 800 \mathrm{~V} \mathrm{DC}, 230 \mathrm{~V}: 400 \mathrm{~V} \mathrm{DC}$)	
	Undervoltage	Detects DC link circuit undervoltage,and stops the inverter. (460V : $400 \mathrm{~V} \mathrm{DC}, 230 \mathrm{~V}: 200 \mathrm{~V} \mathrm{DC}$)	
	Input phase loss	Phase loss protection for power line input.	
	Overheating	Protects the inverter by detection of inverter temperature.	
	Short-circuit	Short-circuit protection for inverter output circuit	
	Ground fault	- Ground fault protection for inverter output circuit (3-phase current detection method) - Zero-phase current detection method (40HP or larger)	
	Motor overload	- The inverter trips, and then protects the motor. - Electronic thermal overload protection can be set for standard motor or inverter motor - Thermal time constant (0.5 to 75.0 minutes) can be preset for a special motor. - The second motor's electronic thermal overload protection can be preset for 2-motor changeover operation.	
	DB resistor overheating	- Prevents DB resistor overheating by internal electronic thermal overload relay (10HP or smaller). - Prevents DB resistor overheating by external thermal overload relay attached to DB resistor (15HP or larger). (The inverter stops electricity discharge operation to protect the DB resistor.)	
	Stall prevention	- Controls the output frequency to prevent $\overline{O L}$ (overcurrent) trip when the output current exceeds the limit value during acceleration. - Lowers the output frequency to hold almost constant torque when the output current exceeds the limit value during operation at constant speed. - Controls the output frequency to prevent $D \mathcal{L} \dot{\prime}$ (overvoltage) trip when the DC link circuit voltage exceeds the limit value during deceleration.	
	Output phase loss	When the inverter executes auto-tuning, detects each phase impedance imbalance.	
	Motor protection by PTC thermistor	When the motor temperature exceeds allowable value, the inverter trips automatically.	
	Auto reset	When the inverter is tripped, it resets automatically and restarts.	
Condition (Installation and operation)	Installation location*	Free from corrosive gases, flammable gases, oil mist, dusts, and direct sunlight. Indoor use only. * If the inverter has to be used in an atmosphere including the hydrogen sulfide gases, a special model might be available. Contact Fuji Electric FA.	
	Altitude	$3300 \mathrm{ft}(1000 \mathrm{~m})$ or less. Applicable to $9800 \mathrm{ft}(3000 \mathrm{~m})$ with power derating ($-10 \% / 3300 \mathrm{ft}(1000 \mathrm{~m}$))	
	Ambient temperature	-10 to $+50^{\circ} \mathrm{C}\left(14\right.$ to $\left.122^{\circ} \mathrm{F}\right)$. For inverters of 30 HP or smaller, remove the ventilation covers when operating it at a temperature of $40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$ or above.	
	Ambient humidity	5 to 95\%RH (non-condensing)	
	Vibration	3 mm at from 2 to less than $9 \mathrm{~Hz}, 9.8 \mathrm{~m} / \mathrm{s}^{2}$ at from 9 to less than 20 Hz , $2 \mathrm{~m} / \mathrm{s}^{2}$ at from 20 to less than $55 \mathrm{~Hz}\left(2 \mathrm{~m} / \mathrm{s}^{2}\right.$ at from 9 to less than 55 Hz :G11S $125 \mathrm{HP}, \mathrm{P} 11 \mathrm{~S} 150 \mathrm{HP}$ or more) $1 \mathrm{~m} / \mathrm{s}^{2}$ at from 55 to less than 200 Hz ,	

Terminal Functions

Terminal Functions

	Symbol	Terminal name	Function	Remarks
Main circuit	L1/R, L2/S,L3/T	Power input	Connect a 3-phase power supply.	
	$\mathrm{U}, \mathrm{v}, \mathrm{W}$	Inverter output	Connect a 3-phase induction motor.	
	P1, P(+)	For DC REACTOR	Connect the DC REACTOR for power-factor correcting or harmonic current reducing.	DC REACTOR: 75 HP or smaller : Option 100 HP or larger : Standard
	$\mathrm{P}(+), \mathrm{N}(-)$	For BRAKING UNIT	- Connect the BRAKING UNIT (Option). - Ūsed fór D̄C̄ bus connēectión sys̄tem.	BRAKING UNIT (Option): G11S: 15HP or larger, P11S: 20HP or larger
	$\mathrm{P}(+)$, DB	For EXTERNAL BRAKING RESISTOR	Connect the EXTERNAL BRAKING RESISTOR (Option)	G11S : 10HP or smaller, P11S : 15 HP or smaller
	© G	Grounding	Ground terminal for inverter chassis (housing).	
	Ro, T0	Auxiliary control power supply	Connect the same AC power supply as that of the main circuit to back up the control circuit power supply.	1HP or smaller: Not correspond
Analong input	13	Potentiometer power supply	+10V DC power supply for frequency setting POT (POT: 1 to $5 \mathrm{k} \Omega$)	- Allowable maximum output current : 10 mA
	12	Voltage input	- 0 to +10 V DC/0 to 100% (0 to $+5 \mathrm{~V} \mathrm{DC} / 0$ to 100%) - Reversible operation can be selected by function setting. $0 \text { to } \pm 10 \mathrm{~V} \mathrm{DC} / 0 \text { to } \pm 100 \% \text { (} 0 \text { to } \pm 5 \mathrm{~V} \mathrm{DC} / 0 \text { to } \pm 100 \% \text {) }$ - Inverse mode operation can be selected by function setting or digital input signal. $+10 \text { to } 0 \mathrm{~V} \text { DC/0 to } 100 \%$	- Input impedance: $22 \mathrm{k} \Omega$ - Allowable maximum input voltage: $\pm 15 \mathrm{~V}$ DC - If input voltage is 10 to $15 \mathrm{~V} D \mathrm{DC}$, the inverter estimates it to10V DC.
		(Tōrqūe contrṓ) (PID control) (PG feedback)	Usēed for forque- controil reference signàl.	
			Used for PID control reference signal or feedback signal.	
			Used for reference signal of PG feedback control (option)	
	V2	Voltage input	Frequency is set according to the analog input voltage supplied from an external circuit - 0 to +10 V DC/0 to 100% - Reverse operation: +10 to 0 V DC/0 to 100% * It can be used only one terminal "V2" or "C1" alternatively * Input resistance: 22k Ω	
	C1	Current input	- 4 to 20 mA DC/0 to 100% - Inverse mode operation can be selected by function setting or digital input signal. 20 to 4 mA DC/0 to 100%	- Input impedance:250k Ω - Allowable maximum input current: 30 mA DC - If input current is 20 to 30 mA DC , the inverter estimates it to20mA DC.
		(P̄ī cōntrôol)		
	11	Common	Common for analog signal	Isolated from terminals CME and CM.
Digital input	FWD	Forward operation command	FWD - CM: ON The motor runs in the forward direction. FWD - CM: OFF The motor decelerates and stops.	When FWD and REV are simultaneously ON,the motor decelerates and stops.
	REV	Reverse operation command	REV - CM: ON The motor runs in the reverse direction. REV - CM: OFF The motor decelerates and stops.	
	X 1 X 2 $\times 3$ $\times 4$ $\times 5$ $\times 6$ $\times 6$ $\times 7$ $\times 8$ X 9	Digital input 1 Digital input 2 Digital input 3 Digital input 4 Digital input 5 Digital input 6 Digital input 7 Digital input 8 Digital input 9	These terminals can be preset as follows.	(maximum source current: 5 mA) - OFF state maximum terminal voltage: 22 to 27 V (allowable maximum leakage current: 0.5 mA)
	$\begin{aligned} & \text { (SS1) } \\ & \text { (SS2) } \\ & \text { (SS4) } \\ & \text { (S88) } \end{aligned}$	Multistep freq. selection	(SS1) $: 2(0,1)$ different frequencies are selectable. (SS1,SS2) $: 4(0$ to 3) different frequencies are selectable. (SS1, SSS, SS4) $: 8(0$ to 7 different frequencies are selectable. (SS1,S22,SS4,SS8) $: 16$ (0 to 15) different frequencies are selectable.	Frequency 0 is set by F01 (or C30). (All signals of SS1 to SS8 are OFF)
	$\begin{aligned} & (\mathrm{RT} 1) \\ & (\mathrm{RT} 2) \\ & \hline \end{aligned}$	ACC IDEC time selection		Time 0 is set by F07/F08. (All signals of RT1 to RT2 are OFF)
	(HLD)	3-wire operation stop command	Used for 3-wire operation. (HLD) - CM: ON The inverter self-holds FWD or REV signal. (HLD) - CM: OFF The inverter releases self-holding.	Assigned to terminal $\mathrm{X7}$ at factory setting.
	(BX)	Coast-to-stop command	(BX) - CM: ON Motor will coast-to-stop. (No alarm signal will be output.)	- The motor restarts from 0 Hz by turning off BX with the operation command (FWD or REV) ON. - Assigned to terminal X8 at factory setting.
	(RST)	Alarm reset	(RST) - CM: ON Faults are reset. (This signal should be held for more than 0.1 s.)	- During normal operating, this signa lis ígnored. - Assigned to X9 at factory setting.
	(THR)	Trip command (External fault)	(THR) - CM: OFF "OH2 trip" occurs and motor will coast-to-stop.	This alarm signal is held internally.
	(Jōo	Jogging operation	(JOGO)-CM: ON- -- Jō frequency is effective.	This signal is effective-only while the inverter is stopping.
	(Hz2/Hz1)	Freq. set $2 /$ Freq. set 1	(Hz2/Hz1) - CM: ON Freq. set 2 is effective.	If this signal is changed while the inverter is running, the signal is effective only after the inverter stops.
	(M'M/Mī)	Motor $2 \overline{1}$ Motor 1	to the second motor's ones.	If this signal is changed while the inverter is running, the signal is effective only after the inverter stops.
	(DCBRK)	DC brake command	(DCBRK) - CM: ON The DC injection brake is effective. (In the inverter deceleration mode)	If the operation command(FWD/REV) is input while DC braking is effective, the operation command (FWD/REV) has priority.
		Torque limiter $2 \bar{I}$ Torque limiter 1		
	(SW50)	S̄witching operation between line and inverter	(SW50(SW60)) - CM: OFF The motor is changed from line operation to inverter operation.	Main circuit changeover signals are output through $\overline{1} 1$ to Y5 terinal.
	(UP)	UP command	(UP)-CM: ONThe output frequency increases. (DOWN) - CM: ON The output frequency decreases. - The output frequency change rate is determined by ACC / DEC time. - Restarting frequency can be selected from 0 Hz or setting value at the time of stop. 	When UP and Dōwn commands are simultaneously ON,DOWN signal is effective.
	(DOWN)	DOWN command		
	(Hz/PID)	PID control cancel	(HZ/PID) - CM: ON The PID control is canceled,and frequency setting by KEYPAD	
		Inverse mode changeover	(IVS) - CM: ON Inverse mode is effective in analog signal input.	If this signal is changed while the inverter is running, the signal is effective only after the inverter stops.
		İterlock signal for $52-2$	Connect to auxiliary contact (1NC) of $52-2$.	
	(Hz/TRQ)	TRQ control cancel	(Hz/TRQ) - CM: ON The torque control is canceled, and ordinary operation is effective.	
	(LE)	Link enable (RS-485, Bus)	(LE) - CM: ONThe link opereation is effective. Used to switch operation between ordinary operation and link operation to communication.	RS-485: Standard, Bus: Option
	(U-Di)	Ūniversal DI	This signal is transmitted to main controller of LINK operation.	
	(STTM)	Pick up start mode	(STMM)-CM: ON-...-The"Pick up" start mode is effective	
	(PG/Hz)	SY-PG enabled		Option
	(${ }^{\text {SYMC) }}$	Syuhronization command	(SYC) - CM: ON - The motor is controlled for synchronized operation between 2 axes with PGs.	Option
	(ŻERO)	Zero speed command		This function can be selected at PG feedback control. Option
	(STOP1)	Forced stop command	(STOP1) - CM: ON The motor decelerates and stops.	
	(STOP2)	Forced stop command with Deceleration time 4		
	(EXITE)	Pre-exciting command:	(EXITE) - CM: ON The magnetic flux can be established preliminary before starting at $\overline{\mathrm{P}}$	
	PLC	PLC terminal	Connect PLC power supply to avoid malfunction of the inveter that has SINK type digital input,when PLC power supply is off.	
	CM	Common	Common for digital signal	Isolated from terminals CME and 11.

Terminal Functions

Basic Wiring Diagram

Keypad panel Operation

The following diagram is for reference only. For detailed wiring diagrams, refer to the relevant instruction manual.

Terminal Arrangement

External signal input Operation

The following diagram is for reference only. For detailed wiring diagrams, refer to the relevant instruction manual.

*Option
*1) Use the inverter whose rated input voltage matches the power supply voltage.
*2)An optional device. Use it when necessary.
*3) Use this peripheral device when necessary.
*4) 15 HP or smaller:
Terminals $[P 1]$ and $[P(+)]$ are connected with a jumper wire before shipping. When connecting an optional DC reactor (DCR) *9), remove the jumper wire that connects the terminals [P1] and $[P(+)]$.
100HP or larger:
Terminals $[\mathrm{P} 1]$ and $[\mathrm{P}(+)]$ are not connected at shipment from factory. Be sure to connect the DC reactor (DCR) *9) standard provided to these terminals.
*5) For G11S models from 1/4 to 10HP, a built-in braking resistor (DBR) is connected to the inverter before shipping. (DBR is not
mounted on G11S models 15HP or larger, and P11S models.) When connecting an optional external braking resistor (DB), remove the DBR connection cables from $[\mathrm{P}(+)]$ and [DB] terminals. The end of the removed cables (indicated with an X) must be insulated.
*6) When connecting an optional external braking resistor (DB), be sure to also use an optional braking unit *8). Connect the optional braking unit to the $[\mathrm{P}(+)]$ and $[\mathrm{N}(-)]$ terminals. Auxiliary terminals [1] and [2] have polarity.
Be sure to connect cables to these terminals correctly. (See the diagram)
*7) Terminals [R0] and [T0] are provided for G11S models 2HP or larger, and P11S models. These terminals are not provided for G11S models 1HP or smaller. Even if these terminals are not powered, the inverter can be operated.

Keypad Panel Functions and Operations

Keypad panel

LED monitor

In operation mode: Displays the setting frequency, output current, voltage, motor speed, or line speed.
In trip mode:
Displays code indicating the cause of trip.

Up/Down keys

In operation mode :
Increases or decreases the frequency or speed.
In program mode: Increases or decreases function code number and data set value.

Program key

Switches the display to a menu screen or to the initial screen for operation mode or alarm mode.

Shift key (Column shift)

In program mode :
Moves the cursor horizontally at data change. Pressing this key with the UP or DOWN key, the screen changes to the next function block.

LCD monitor

In operation mode :
Displays various items of information such as operation condition and function data. Operation guidance, which can be scrolled, is displayed at the bottom.
In program mode : Displays functions and data. This LCD monitor has a back light future.

Unit indication

Displays the unit for the information shown on the LED monitor.

FWD/REV keys
In operation mode : Starts the inverter with forward or reverse operation command.
Pressing the FWD or REV key lights the RUN lamp. Invalid when the function code F02 (Operation method) is set at 1 (External signal operation).

Stop key

In operation mode : Stops the inverter. Invalid when the function code F02 (Operation method) is set at 1 (External signal operation).

Function/Data Select key
In operation mode :
Changes the displayed values of LED monitor. In program mode : Selects the function code or stores the data.

Keypad panel operation

Perform the wiring shown in the Basic wiring diagram on page 14. Turn on inverter power, and use the \triangle or key to set an output frequency. Press the key, then press the \square or key.
The inverter starts running using the factory setting function data.
Press the key to stop the inverter.

Procedure for selecting function codes and data codes

The following is a sample procedure for selecting a function code and changing the function data.
(1) Press the key to switch the operation monitor screen to the program menu screen.

```
RUN
PRG \(\rightarrow\) PRG MENU F/D \(\rightarrow\) LED SHIFT
```

FWD
(2) Select "1. DATA SET", and press the \square key.

```
-> 1. DATA SET
    2. DATA CHECK
    3. OPR MNTR
    4.1/O CHECK
```

(3) Press the \triangle or \vee key to select a target function code. To quickly scroll the function select screen, press $>$ key and the \wedge or \vee key at the same time. At the target function, press key.
(4) Use the
 , and
 keys to change the function data to the target value. (Use the \ggg key to move the cursor when you want to enter a numerical value.)
(5) Press the key to store the updated function data in memory.
The screen shifts for the selection of the next function.

F02 OPR METHOD
F03 MAX Hz-1
F04 BASE Hz-1
F05 RATED V-1
(6) Pressing the key switches the screen to the operation monitor screen.

```
RUN
PRG }->\mathrm{ PRG MENU
F/D }->\mathrm{ LED SHIFT
```

 FWD

1) Setting a frequency

When the operation monitor screen is displayed, a frequency can be set by using the \wedge or \vee key in both the operation and stop modes. When the target frequency is displayed, press the key to enter the frequency in memory.

2) Switching a unit indication

During both operation and stop modes, each time the key is pressed, the value displayed on the LED monitor changes, and the unit indication on the LCD monitor shifts from Hz to $\mathrm{A}, \mathrm{V}, \mathrm{r} / \mathrm{min}, \mathrm{m} / \mathrm{min}$, kW , and \% in this order in accordance with the displayed value.

Function settings

Fundamental Functions

Extension Terminal Funcitons

The functions in the yellow boxes can be set while the inverter is running. Other functions must be set while the inverter is stopped.

Function settings

Extension Terminal Functions (cont'd)

	Function			Setting range	Min. unit	Factory setting	
	Code	Name	LCD monitor			-30HP	40HP-
LED \& LCD Monitor	[40]	Display coefficient A	E40 COEF A	-999.00 to 999.00	0.01		01
	E4i	Display coefficient B	E41 COEF B	-999.00 to 999.00	0.01		. 00
	[42]	LED Display filter	E42 DISPLAY FL	0.0 to 5.0s	0.1 s		. 5
	[43	LED Monitor (Function)	E43 LED MNTR	0 : Output frequency 1 (Before slip compensation) (Hz) 1 : Output frequency 2 (After slip compensation) (Hz) 2 : Setting frequency (Hz) 3 : Output current (A) 4 : Output voltage (V) 5 : Motor synchronous speed (r/min) 6 : Line speed (m/min) 7 : Load shaft speed (r/min) 8 : Torque calculation value (\%) 9 : Input power 10 : PID reference value 11 :PID reference value (remote) 12 :PID feedback value	-		0
	E44	(Display at STOP mode)	E44 LED MNTR2	0 : Setting value 1 : Output value	-		0
	E45	LCD Monitor (Function)	E45 LCD MNTR	0 : Displays operation guidance 1 : Bar graph (Output freq..Output current, and Output torque)	-		0
	E45	Language	E46 LANGUAGE	0 : Japanese 1 : English 2 :German 3 : French 4 : Spanish 5 : Italian	-		1
	[47	LCD Monitor (Contrast)	E47 CONTRAST	0(Soft) to 10(Hard)	-		5

The functions in the yellow boxes can be set while the inverter is running. Other functions must be set while the inverter is stopped.

Control Functions of Frequency

Motor Parameters

	Function				Setting range	Min. unit	Factory setting	
	Code	Name	LCD monitor				-30HP	40HP-
Motor 1	PП i	Number of motor 1 poles	P01	M1 POLES	2 to 14	2	4	
	PMC	Motor 1 (Capacity)	P02	M1-CAP	30HP or smaller $: 0.01$ to 45.00 kW 40 HP or larger $: 0.01$ to 800.00 kW	0.01 kW	*1)	
	P03	(Rated current)	P03	M1-Ir	0.00 to 2000 A	0.01 A	*1)	
	074	(Tuning)	P04	M1 TUN1	0 : Inactive 1 : Active (One time tuning of \%R1 and \%X (on motor stopping mode)) 2 : Active (One time tuning of \%R1, \%X and lo (on motor running mode))	-	0	
	975	(On-line Tuning)	P05	M1 TUN2	0 : Inactive 1 : Active (Real time tuning of $\% R 2$)	${ }^{-}$	0	
	P05	(No-load current)	P06	M1-Io	0.00 to 2000 A	0.01A	*1)	
	P\%7	(\%R1 setting)	P07	M1-\%R1	0.00 to 50.00 \%	0.01\%	*1)	
	OMS	(\%X setting)	P08	M1-\%X	0.00 to 50.00 \%	0.01\%	*1)	
	009	(Slip compensation control 1)	P09	SLIP COMP1	0.00 to +15.00	0.01 Hz	0.00	

The functions in the yellow boxes can be set while the inverter is running. Other functions must be set while the inverter is stopped.

High Performance Functions

Function Settings

Alternative Motor Parameters

	Function			Setting range	Min. unit	Factory setting
	Code	Name	LCD monitor			-30HP 40HP-
Motor 2	日发	Maximum frequency 2	A01 MAX Hz-2	G11S :50 to 400Hz P11S :50 to 120Hz	1 Hz	60
	802	Base frequency 2	A02 BASE Hz-2	G11S :25 to 400Hz P11S :25 to 120Hz	1Hz	60
	803	Rated voltage 2 (at Base frequency 2)	A03 RATED V-2	0 (Free), 320 to 480 V (460 V) 0 (Free), 80 to 240 V (230 V)	1V	$\begin{aligned} & \hline 380 \\ & 220 \end{aligned}$
	804	Maximum voltage 2 (at Maximum frequency 2)	A04 MAX V-2	$\begin{array}{r} 320 \text { to } 480 \mathrm{~V}(460 \mathrm{~V}) \\ 80 \text { to } 240 \mathrm{~V}(230 \mathrm{~V}) \\ \hline \end{array}$	1V	$\begin{aligned} & 380 \\ & 220 \\ & \hline \end{aligned}$
	805	Torque boost 2	A05 TRQ BOOST2	$0.0:$ Automatic 0.1 (for constant torque load) $2.9:$ Manual (for variable torque load) 2.0 to $20.0:$ Manual (for constant torque load)	-	$\begin{aligned} & \text { G11S : } 2.0 \\ & \text { P11S : } 2.0 \end{aligned}$
	805	Electronic (Select) thermal overload protection	A06 ELCTRN OL2	0 : Inactive 1 : Active (for 4-pole standard motor) 2 :Active (for 4-pole inverter motor)	-	1
	807	for motor 2 (Level)	A07 OL LEVEL2	Approx. 20 to 135\% of rated current	0.01A	*1)
	808	(Thermal time constant)	A08 TIME CNST2	0.5 to 75.0 min	0.1 min	5.0 10.0
	809	Torque vector control 2	A09 TRQVECTOR2	0 : Inactive 1 : Active	-	0
	810	Number of motor 2 poles	A10 M2 POLES	2 to 14	2	4
	R i	Motor 2 (Capacity)	A11 M2-CAP	30 HP or smaller : 0.01 to 45.00 kW 40HP or larger : 0.01 to 800.00 kW	0.01 kW	*1)
	812	(Rated current)	A12 M2-Ir	0.00 to 2000 A	0.01A	*1)
	813	(Tuning)	A13 M2 TUN1	0 : Inactive 1 : Active (One time tuning of \%R1 and \%X (on motor stopping mode)) 2 : Active (One time tuning of \%R1, \%X and lo (on motor running mode))	-	0
	714	(On-line Tuning)	A14 M2 TUN2	0 : Inactive 1 : Active (Real time tuning of \%R1 and \%X)		0
	815	(No-load current)	A15 M2-Io	0.00 to 2000 A	0.01A	*1)
	815	(\%R1 setting)	A16 M2-\%R1	0.00 to 50.00 \%	0.01\%	*1)
	8 17	(\%X setting)	A17 M2-\%X	0.00 to 50.00 \%	0.01\%	*1)
	8 18	Slip compensation control 2	A18 SLIP COMP2	0.00 to +15.00 Hz	0.01 Hz	0.00

NOTES : *1) Typical value of standard Fuji 4P motor . *2) Percent shall be set according to FUNCTION CODE : P02 orA11, Motor capacity. Torque referenced here may not be obtainable when DATA CODE : 0 is selected for FUNCTION CODE : P02 or A11.

The functions in the yellow boxes can be set while the inverter is running. Other functions must be set while the inverter is stopped

User Functions

Function			Setting range	Min. unit	Factory setting	
Code	Name	LCD monitor			-30HP	40HP-
UiO I	Maximum compensation frequency during braking torque limit	U01 USER 01	0 to 65535	1	75	
HiL?	1st S-shape level at acceleration	U02 USER 02	1 to 50\%	1	10	
403	2nd S-shape level at acceleration	U03 USER 03	1 to 50\%	1	10	
0104	1st S-shape level at deceleration	U04 USER 04	1 to 50\%	1	10	
0.05	2nd S-shape level at deceleration	U05 USER 05	1 to 50\%	1	10	
1108	Main DC link (Initial value)	U08 USER 08	0 to 65535	1	XXXX	
409	capacitor (Measured value)	U09 USER 09	0 to 65535	1	0	
$\square{ }^{\circ} \mathrm{CO}$	PC board capacitor powered on time	U10 USER 10	0 to 65535h	1	0	
-1i	Cooling fan operating time	U11 USER 11	0 to 65535h	1	0	
413	Magnetize current vibration damping gain	U13 USER 13	0 to 32767	1	819	410
415	Slip compensation filter $\begin{gathered}\text { time constant }\end{gathered}$	U15 USER 15	0 to 32767	1	556	546
423	Integral gain of continuous operation at power failure	U23 USER 23	0 to 65535	1	1738	1000
123	Proportional gain of continuous operation at power failure	U24 USER 24	0 to 65535	1	1024	1000
448	Input phase loss protection	U48 USER 48	0, 1, 2	-	-75HP	100HP-
					0	1
$\square 49$	RS-485 protocol selection	U49 USER 49	0,1	-		0
$\square 155$	Speed agreement (Detection width)	U56 USER 56	0 to 50\%	1		0
457	IPG error (Delection timer)	U57 USER 57	0.0 to 10.0s	0.1		. 5
$\square 58$	PG error selection	U58 USER 58	0,1	-		1
459	Braking-resistor function select (up to 30HP) Manufacturer's function (40HP or more)	U59 USER 59	00 to A8 (HEX)	1		0
150	Regeneration avoidance at deceleration	U60 USER 60	0,1	-		0
	Voltage detect offset and gain adjustment	U61 USER 61	$\begin{aligned} & \hline-30 \mathrm{HP}: 0 \text { (Fixed.) } \\ & 40 \mathrm{HP}-: 0,1,2 \end{aligned}$	-		O

[^3]| Function | Description | | | LED monitor |
| :---: | :---: | :---: | :---: | :---: |
| Overcurrent protection （Short－circuit） （Ground fault） | －Stops running to protect inverter from an overcurrent resulting from overload．
 －Stops running to protect inverter from an overcurrent due to a short－circuit in the output circuit．
 －Stops running to protect inverter from an overcurrent due to a ground fault in the output circuit．
 －Stops running to protect inverter from an overcurrent resulting from ground fault in the output circuit by detecting zero－phase current． | －40HP or larger model only | During acceleration | Til |
| | | | During deceleration | |
| | | | While running at constant speed | 「118 |
| | | | Groung fault | $E F$ |
| Overvoltage protection | －The inverter stops when it detects an overvoltage in the DC link circuit． | －460V ：800V DC or more 230 V ：400V DC or more
 －Protection is not assured if excess AC line voltage is applied inadvertently． | During acceleration | Rili |
| | | | During deceleration | パにコ |
| | | | While running at constant speed | 「1゙ご |
| Incoming surge protection | －Protects the inverter against surge voltage between the main circuit power line and ground．
 －Protects the inverter against surge voltage in the main circuit power line． | －The inverter may be tripped by some other protective function． | | |
| Undervoltage protection | －Stops the inverter when the DC link circuit voltage drops below undervoltage level． | －460V ：360V DC（30HP or smaller）， 375V DC（40HP or larger）
 －230V ：180V DC（30HP or smaller），
 186V DC（40HP or larger） | | 1íi |
| Input phase loss protection | －The inverter is protected from being damaged when open－phase fault occurs． | | | L！ |
| Overheat protection | －Stops the inverter when it detects excess heat sink temperature in case of cooling fan failure or overload．This is also caused by short－circuit of terminals 13 and 11. | | | 困年 |
| | －Stops the inverter when it detects an abnormal rise in temperature in the inverter unit caused by insufficient ventilation in cubicles or an abnormal ambient temperature．
 －This is also caused by short－circuit of terminals 13 and 11 （overcurrent of 20 mA at terminal 13）． | | | 「アイゴ |
| | －When the built－in braking resistor overheats，the inverter stops discharging and running．
 －Function data appropriate for the resistor type（built－in／external）must be set． | －G11S ：10HP or smaller model only | | －イロイ゙イ |
| Electronic thermal overload protection （Motor protection） | －This function stops the inverter by detecting an inverter overload． | | | ITİ |
| | －This function stops the inverter by detecting an overload in a standard motor or inverter motor． | | Motor 1 overload | 7il |
| | | | Motor 2 overload | 「7\％ |
| Fuse blown | －When a blown fuse is detected，the inverter stops running． | －40HP or larger model only | | F！゙す。 |
| Stall prevention （Momentary overcurrent limitation） | －When an output current exceeds the limit during acceleration，this function lowers output frequency to prevent the occurrence of an OC1 trip． | －The stall prevention function can be disabled． | | |
| Output phase loss error | －If an unbalance of output circuits is detected during auto－tuning，this function issues an alarm（and stops the inverter）． | | | $E-7$ |
| Active drive | －During running in which acceleration is 60s or longer，this function increases the acceleration time to prevent the occurrence of an OLU trip． | －The acceleration time can be prolonged up to three times the preset time． | | |
| External alarm input | －The inverter stops on receiving external alarm signals．
 －This function is activated when the motor temperature rises where PTC thermistor is used for motor protection（H26：1）． | －Use THR terminal function（digital input）． | | 「ロージ |
| Overspeed protection | －Stops the inverter when the output frequency exceeds the rated maximum frequency by 20\％． | | | 95 |
| PG error | －If disconnection occurs in pulse generator circuits，the inverter issues an alarm． | | | $\stackrel{\square}{\square}$ |
| Alarm output （for any fault） | －The inverter outputs a relay contact signal when the inverter issued an alarm and stopped． | －Output terminals：30A，30B，and 30C
 －Use the RST terminal function for signal input．
 －Even if main power input is turned off，alarm history and trip－cause data are retained． | | |
| Alarm reset command | －An alarm－stop state of the inverter can be cleared with the RESET key or by a digital input signal（RST）． | | | |
| Alarm history memory | －Store up to four instances of previous alarm data． | | | |
| Storage of data on cause of trip | －The inverter can store and display details of the latest alarm history data． | | | |
| Memory error | －The inverter checks memory data after power－on and when the data is written．If a memory error is detected，the inverter stops． | | | Eri |
| KEYPAD panel communication error | －If an error is detected in communication between the inverter and KEYPAD when the Keypad panel is being used，the inverter stops． | －When operated by external signals，the inverter continues running．The alarm output（for any fault）is not output．Only Er2 is displayed． | | Eーご |
| CPU error | －If the inverter detects a CPU error caused by noise or some other factor，the inverter stops． | | | Erご |
| Option communication error | －If a checksum error or disconnection is detected during communication，the inverter issues an alarm． | | | E，－ |
| Option error | －If a linkage error or other option error is detected，the inverter issues an alarm． | | | ErG |
| Operation procedure error | －Er6 is indicated only when the inverter is forcedly stopped by［STOP 1］or［STOP 2］ operation in E01to E09（Set value： 30 or 31）． | | | ErE |
| Output wiring error | －This error is detected when the wiring on the inverter output is disconnected unwired on auto－tuning． | | | |
| Charging circuit alarm | －This alarm is activated when the power supply is not applied to the main terminal L1／R or L3／T or charging－circuit relay is faulty． | －40HP or larger model only | | $E-7$ |
| RS－485 communication error | －If an RS－485 communication error is detected，the inverter issues an alarm． | | | |

NOTES ：1）Retaining alarm signal when auxiliary controll power supply is not used ：If the inverter power supply is cut off while an internal alarm signal is being output，the alarm signal cannot be retained．2）To issue the RESET command，press the key on the KEYPAD panel or connect terminals RST and CM and disconnect them afterwards．3）Fault history data is stored for the past four trips．

External Dimensions

Fig. 1

FRNF25G11S-2UX to FRN001G11S-2UX
FRNF50G11S-4UX,FRN001G11S-4UX

Type	D	D4	D5	D6
FRNF25G11S-2UX	5.12	1.44	3.15	2.85
FRNF50G11S-2UX	(130)	(36.5)	(80)	(71.5)
FRNF50G11S-4UX				
FRN001G11S-2UX	5.71	2.03	3.74	3.41
FRN001G11S-4UX	(145)	(51.5)	(95)	(86.5)

Fig. 3

FRN007G11S-2UX,FRN010G11S-2UX FRN007G11S-4UX,FRN010G11S-4UX FRN007P11S-2UX to FRN015P11S-2UX
FRN007P11S-4UX to FRN015P11S-4UX

Fig. 2

FRN002G11S-2UX to FRN005G11S-2UX FRN002G11S-4UX to FRN005G11S-4UX

Fig. 4

FRN015G11S-2UX to FRN030G11S-2UX FRN015G11S-4UX to FRN030G11S-4UX FRN020P11S-2UX to FRN030P11S-2UX FRN020P11S-4UX to FRN030P11S-4UX

Fig. 5

FRN040G11S-2UX to FRN125G11S-2UX FRN040G11S-4UX to FRN350G11S-4UX FRN040P11S-2UX to FRN150P11S-2UX FRN040P11S-4UX to FRN450P11S-4UX Unitinch(mm)

Internal mounting type

External cooling type

Fig. 7
Unit:inch(mm)
KEYPAD panel
(Common for all models)

 (viewed from " A "

Reactor, Filter, and Other Accessories

Name (Type)	Function	Mounting position
Arrester (CN23232) (CN2324E)	Suppresses induced lightning surges from power source, thus protecting all equipment connected the power source.	
Radio noise reducing zero-phase reactor (ACL-40B) (ACL-74B)	Reduces radio frequency noise. If the wiring between motor and inverter is shorter than 20 m , use the ferrite ring in the power supply side. If longer than 20 m , use it in the output side.	Ω
Power filter (FHF-TA/ $\square \square / 250$) (FHF-TA/ \square /500) (FHF-TB) \square /250) (FHF-TB/ \square /500)	Prevents the noise generated from the inverter. Supresses radiation noise and induction noise generated from the output side wiring.	
EMC compliant filter (EFL- $\square \square$ SP-2) (EFL- $\square \square \square$ G11-4) (RF3 $\square \square \square$-F11)	This is a special filter which complies with the European EMC (Emission) Directive. This filter should be used together with a ferrite core. Note: Other prerequisites must be fulfilled to ensure compliance with EMC Directives. Refer to this filters operation manual for details.	Power supply
Output circuit filter (OFL- \square $-\square)$ (OFL- \square -4A)	Connected to the output circuit of inverters under low-noise operation with carrier frequency from 8 to $15 \mathrm{kHz}, 6 \mathrm{kHz}$ or higher for 40 HP or larger inverters (OFL- $\square \square \square-\square$), 0.75 to $15 \mathrm{kHz}, 0.75$ to 10 kHz for 100 HP or larger inverters (OFL- \qquad -4A). This filter has the following functions: (1) Suppressing fluctuation of motor terminal voltage. Protects the motor insulation from being damaged by surge voltage. (460V series) (2) Suppressing leakage current from output side wiring. (OFL- $\square \square \square-\square$ only) Reduces the leakage current caused when several motors are operated in parallel or connected with long wiring. * Total wiring length should be less than $1300 \mathrm{ft}(400 \mathrm{~m})$. (3) Suppressing radial noise or inductive noise from output side wiring. Effective noise suppression device for long wiring applications such as plant. Note: When connecting OFL- \square \square - \square, be sure to set the carrier frequency F26 at 8 kHz or over.	
DC REACTOR(DCR) (DCR4- \square) (DCR2- \square	[Use the DCR to normalize the power supply in the following cases.] (1) The power transformer capacity is 500 kVA or over and exceeds the inverter rated capacity by 10 times. (2) The inverter and a thyristor converter are connected with the same transformer. * Check if the thyristor converter uses a commutation reactor. If not, AC reactor must be connected to the power supply side. (3) Overvoltage trip occurs due to open/close of the phase-advancing capacitor for the power supply lines. (4) The voltage unbalance exceeds 2%. $\text { Voltage unbalance }(\%)=\frac{\text { Max. voltage }[\mathrm{V}]-\text { Min. Voltage }[\mathrm{V}]}{\text { Three-phase average voltage }[\mathrm{V}]} \times 67$ [For improving input power-factor, reducing harmonics] - Used to reduce input harmonic current (correcting power-factor) - For the resultant effects, refer to the appended guidelines.	
Surge absorber (Surge suppressor) (S2-A-0) (S1-B-0)	S2-A-0: for magnetic contactor S1-B-0: for mini control relay, or timer	
Frequency meter (TRM-45) (FM-60)	Analog frequency meter TRM-45: 1.77inch $(45 \mathrm{~mm})$ square FM-60 : 2.36inch(60 mm) square	
Frequency setting device (RJ-13) (WA3W-1k Ω)	Frequency setting potentiometer (mounted externally)	

DC reactor

Unit:inch(mm)

Fig. A

Fig. B

Fig. C

Fig. D

*Provided with as standard (separately installed) for inverters of 100 HP or larger capacity.

Power supply voltage votominal applied motor		Inverter type	Reactor type	Fig	Dimensions [inch(mm)]									Weight [lbs(kg)]	
		A			B	C	D	E	F	G	H	Terminal screw			
Threephase 230V	1/4		FRNF25G11S-2UX	DCR2-0.2	A	2.666)	$2.256)$	2.8372)	3.54(0)	0.25)		$0.2 \times 0.31(5.2 \times 8)$	3.7(94)	M4	1.8(0.8)
	1/2	FRNF50G11S-2UX	DCR2-0.4	A	2.666)	$2.256)$	2.8372)	3.54(0)	0.59(15)		$0.2 \times 0.31(5.2 \times 8)$	3.794)	M4	$2.2(1.0)$	
	1	FRN001G11S-2UX	DCR2-0.75	A	$2.666)$	2.256)	2.8372)	3.54(0)	0.79(20)		$0.2 \times 0.31(5.2 \times 8)$	3.794)	M4	$3.1(1.4)$	
	2	FRN002G11S-2UX	DCR2-1.5	A	$2.666)$	$2.256)$	2.8372)	3.54(0)	0.79(20)		$0.2 \times 2.31(5.2 \times 8)$	3.794)	M4	$3.5(1.6)$	
	3	FRN003G11S-2UX	DCR2-2.2	A	3.3986)	2.871)	3.1580)	3.94(100)	$0.3910)$		$0.24 \times 0.43(6 \times 11)$	4.33(110)	M4	$4.0(1.8)$	
	5	FRN005G11S-2UX	DCR2-3.7	A	3.3986)	2.871)	3.1580)	3.94(100)	0.79(20)		0.24×0.43 (6x11)	4.33(110)	M4	$5.7(2.6)$	
	7.5	FRN007G11S/P11S-2UX	DCR2-5.5	A	4.37(111)	3.74(05)	3.1580)	3.94(100)	0.79(20)		0.88x.433(7x11)	5.12(130)	M5	7.9(3.6)	
	10	FRN010G11S/P11S-2UX	DCR2-7.5	A	4.37(111)	3.74(05)	3.1580)	3.94(100)	0.91(23)		$0.88 \times 0.437 \times 111$	5.12(130)	M5	8.4(3.8)	
	15	FRN015G11S/P11S-2UX	DCR2-11	A	4.37(111)	3.74(05)	3.1580)	3.44(100)	0.94(24)	.	0.28x0.437(7x1)	5.39(137)	M6	$9.5(4.3)$	
	20	FRN020G11S/P11S-2UX	DCR2-15	A	5.75(146)	4.88(124)	3.78996)	4.72(120)	0.59(15)		0.28x0.43(7x11)	7.09(180)	M6	13(5.9)	
	25	FRN025G11S/P11S-2UX	DCR2-18.5	A	5.75(146)	4.88(124)	3.78(96)	4.72(120)	0.98(25)		0.28x0.437(7x11)	7.09(180)	M8	16(7.4)	
	30	FRN030G11S/P11S-2UX	DCR2-22A	A	5.75(146)	4.88(124)	3.78(96)	4.72(120)	0.98(25)		0.88x.433(7x11)	7.09(180)	M8	17(7.5)	
	40	FRN040G11S/P11S-2UX	DCR2-30B	B	5.98(152)	3.54(00)	4.57(116)	6.14(156)	4.53(115)	3.0778)	$0.31(8)$	5.12(130)	M10	26(12)	
	50	FRN050G11S/P11S-2UX	DCR2-37B	B	6.73171)	4.33(110)	4.33(110)	5.94(151)	4.53(115)	$2.55(75)$	$0.31(8)$	5.91 (150)	M10	31(14)	
	60	FRN060G11S/P11S-2UX	DCR2-45B	B	6.73(171)	4.33(110)	4.92(125)	6.54(166)	4.72(120)	3.39(8)	$0.31(8)$	5.91 (150)	M10	35(16)	
	75	FRN075G11S/P11S-2UX	DCR2-55B	C	7.48(190)	6.31160)	3.54(00)	5.16(131)	3.94(100)	2.56(6)	$0.31(8)$	8.27(210)	M12	35(16)	
	100	FRN100G11S/P11S-2UX	DCR2-75B	C	7.87(200)	$6.69(170)$	3.94(100)	5.55(141)	4.33(110)	2.76 (70)	0.39(10)	8.27(210)	M12	40(18)	
	125	FRN125G11S/P11S-2UX	DCR2-90B	C	7.09(180)	5.91(150)	4.33(10)	5.94 (151)	5.51(140)	2.9575)	0.39(10)	9.45(240)	00.59(ø15)	44(20)	
	150	FRN150P11S-2UX	DCR2-110B	C	7.48(190)	6.3160)	4.72(120)	6.34(161)	$5.91(150)$	$3.1580)$	0.39(10)	10.63(270)	ø0.59(ø15)	55(25)	
Threephase 460V	1/2	FRNF50G11S-4UX	DCR4-0.4	A	2.6660	$2.2156)$	2.8372)	3.54(0)	0.59(15)		$0.2 \times 0.31(5.2 \times 8)$	3.794)	M4	$2.2(1.0)$	
	1	FRN001G11S-4UX	DCR4-0.75	A	2.6660	$2.256)$	2.8372)	3.54(0)	0.79(20)		$0.2 \times 2.31(5.2 \times 8)$	3.794)	M4	$3.1(1.4)$	
	2	FRN002G11S-4UX	DCR4-1.5	A	$2.666)$	$2.256)$	2.8372)	3.54(0)	0.79(20)		$0.2 \times 0.31(5.2 \times 8)$	3.794)	M4	$3.5(1.6)$	
	3	FRN003G11S-4UX	DCR4-2.2	A	3.3986)	2.871)	3.1580)	3.94(100)	0.59(15)		$0.24 \times 0.35(6 \times 9)$	4.33(110)	M4	4.4(2.0)	
	5	FRN005G11S-4UX	DCR4-3.7	A	3.3986)	2.871)	3.15880)	3.94(100)	0.79(20)		$0.24 \times 0.35(6 \times 9)$	4.33(110)	M4	$5.7(2.6)$	
	7.5	FRN007G11S/P11S-4UX	DCR4-5.5	A	3.3986)	2.871)	3.1580)	3.94(100)	0.79(20)		$0.44 \times 0.35(6 \times 9)$	4.33(110)	M4	$5.7(2.6)$	
	10	FRN010G11S/P11S-4UX	DCR4-7.5	A	4.37(111)	3.7405)	3.1580)	3.94(100)	0.94(24)		0.88x0.43(7x11)	5.12(130)	M5	$9.3(4.2)$	
	15	FRN015G11S/P11S-4UX	DCR4-11	A	4.37(111)	3.74(05)	3.1580)	3.94(100)	0.94(24)		$0.88 \times 0.4377 \times 11)$	5.12/130)	M5	$9.5(4.3)$	
	20	FRN020G11S/P11S-4UX	DCR4-15	A	5.75/146)	4.88(124)	3.78(96)	4.72(120)	0.59(15)		0.88x.437(7x11)	6.73(171)	M5	13(5.9)	
	25	FRN025G11S/P11S-4UX	DCR4-18.5	A	5.75(146)	4.88(124)	3.78996)	4.72(120)	0.98(25)		0.88x.433(7x11)	6.73(171)	M6	16(7.2)	
	30	FRN030G11S/P11S-4UX	DCR4-22A	A	5.75(146)	4.88(124)	3.78996)	4.72(120)	0.98(25)		0.28x.433(7x11)	6.73(171)	M6	16(7.2)	
	40	FRN040G11S/P11S-4UX	DCR4-30B	B	5.98(152)	3.54(0)	4.53(115)	$6.18(157)$	$3.94(100)$	3.0778)	$0.31(8)$	5.12(130)	M8	29(13)	
	50	FRN050G11S/P11S-4UX	DCR4-37B	B	6.731711)	4.33(10)	4.33(110)	5.91 (150)	3.94(100)	$2.55(75)$	$0.31(8)$	5.91 (150)	M8	33(15)	
	60	FRN060G11S/P11S-4UX	DCR4-45B	B	6.731711)	4.33(110)	4.92(125)	$6.51165)$	4.33(110)	3.23(82)	0.31(8)	5.91 (150)	M8	40(18)	
	75	FRN075G11S/P11S-4UX	DCR4-55B	B	6.73(171)	4.33(10)	5.12(130)	6.69(170)	4.33(110)	3.35(6)	$0.31(8)$	5.91 (150)	M8	44(20)	
	100	FRN100G11S/P11S-4UX	DCR4-75B	C	7.48(190)	6.31160)	4.53(115)	5.94(151)	3.94(100)	$2.55(75)$	0.39(10)	9.45(20)	M10	44(20)	
	125	FRN125G11S/P11S-4UX	DCR4-90B	C	7.48(190)	6.3160)	4.92(125)	$6.34(161)$	4.72(120)	3.15(80)	0.39(10)	9.84(250)	60.47(ø12)	$51(23)$	
	150	FRN150G11S/P11S-4UX	DCR4-110B	C	7.48(190)	6.31160)	4.92(125)	6.34(161)	4.72(120)	3.1580)	0.39(10)	9.84(250)	¢0.47(012)	55(25)	
	200	FRN200G11S/P11S-4UX	DCR4-132B	C	7.87(200)	$6.69(170)$	5.31(135)	6.731711	4.72120)	3.35(85)	0.39(10)	10.24(260)	60.47(ø12)	62(28)	
	250	FRN250G11S/P11S-4UX	DCR4-160B	C	8.27(210)	7.09(180)	5.31(135)	6.73(171)	4.72(120)	3.35(85)	0.47(12)	11.42200)	00.47(ه12)	$71(32)$	
	300	FRN300G11S/P11S-4UX	DCR4-200B	C	$8.27(210)$	7.09(180)	5.31(135)	6.731711	5.51(140)	3.54(00)	0.47(12)	11.61 (225)	¢0.47(ø12)	$77(35)$	
	350	FRN350G11S/P11S-4UX	DCR4-220B	C	$8.66(220)$	7.48(190)	5.31(135)	$6.73(171)$	5.51(140)	3.54(0)	0.47(12)	11.81(300)	¢0.59(ø15)	88(40)	
	400	FRN400G11S/P11S-4UX FRN450P11S-4UX	DCR4-280B	C	$8.66(220)$	7.48(190)	5.71 (145)	7.13(181)	5.91(150)	3.7405)	0.47(12)	12.6(320)	ø0.59(ø15)	99(45)	
	450	FRN450G11S-4UX	DCR4-315B	D	$8.66120)$	7.48(190)	5.71(145)	7.13(181)	5.91(150)	3.7405)	0.47(12)	12.6(320)	ه0.59(ø15)	115(52)	
	500	FRN500G11S/P11S-4UX	DCR4-355B	D	$8.66(220)$	7.48(190)	$5.71(145)$	7.13(181)	6.3160)	3.7405)	0.47(12)	12.6(320)	¢0.59(ø15)	121(55)	
	600	FRN600G11S/P11S-4UX	DCR4-400B	D	9.45240)	$8.27(210)$	$5.71(145)$	7.131818)	6.69(170)	3.7405)	0.47(12)	13.39(340)	¢0.59(ø15)	132(60)	
	700	FRN700P11S-4UX	DCR4-450B	D	10.24200)	8.86(225)	$5.71(145)$	7.13(181)	6.69(170)	3.7405)	0.47(12)	13.39(340)	¢0.59(ø15)	148(67)	
	800	FRN800P11S-4UX	DCR4-500B	D	10.24(200)	8.86(225)	$5.71(145)$	7.13(181)	7.28(185)	$3.94100)$	0.47(12)	13.39(30)	¢0.59(ø15)	154(70)	

Braking unit, Braking resistor

Power supply voltage	Inverter				Option				$\begin{gathered} \text { G11S } \\ \begin{array}{c} \text { Max. } \\ \text { baking } \\ \text { torgue } \\ (\%) \end{array} \end{gathered}$	Continuous braking (100\% torque conversion value)		Repelitive braking (100s or less cycle)		$\text { P11S } \begin{aligned} & \text { Continuous braking (100\% } \\ & \text { torque conversion value) } \end{aligned}$			Repetitive braking (100s or less cycle)	
	G11S		P11S		Braking unit		Braking resistor			Braking time (s)	Discharging capability (kWs)	$\begin{aligned} & \text { Duty } \\ & \text { cycle } \end{aligned}$(\%)	Average loss (HP)	Max. braking torque (\%)	$\begin{array}{\|c} \text { Braking } \\ \text { time } \\ \text { (s) } \end{array}$	Discharging capability (kWs)	Dutycycle$\begin{aligned} & \text { (yc) } \\ & \text { (\%) } \end{aligned}$	$\begin{aligned} & \text { Average } \\ & \text { loss } \\ & \text { (HP) } \end{aligned}$
	Moto	In	Mo	Inverter														
	(HP)	type		type	Type	Q'ty	Type	Q'ty										
Threephase 230V	1/4	FRNF25G11S-2UX	-	-	-	-	DB0.75-2	1	150\%	90	9	37	0.050	-	-	-	-	-
	1/2	FRNF50G11S-2UX						1		45	9	22	0.059					
	1	FRN001G11S-2UX						1		45	17	18	0.091					
	2	FRN002G11S-2UX					DB2.2-2	1		45	34	10	0.101					
	3	FRN003G11S-2UX						1		30	33	7	0.103					
	5	FRN005G11S-2UX	7.5	FRN007P11S-2UX	-	-	DB3.7-2	1		20	37	5	0.125	100\%	15	37	3.5	0.125
	7.5	FRN007G11S-2UX	10	FRN010P11S-2UX			DB5.5-2	1		20	55	5	0.185		15	55	3.5	0.185
	10	FRN010G11S-2UX	15	FRN015P11S-2UX			DB7.5-2	1		10	37	5	0.252		7	37	3.5	0.252
	15	FRN015G11S-2UX	20	FRN020P11S-2UX	BU22-2C	1	DB11-2	1		10	55	5	0.369		7	55	3.5	0.369
	20	FRN020G11S-2UX	25	FRN025P11S-2UX		1	DB15-2	1		10	75	5	0.503		8	75	4	0.503
	25	FRN025G11S-2UX	30	FRN030P11S-2UX		1	DB18.5-2	1		10	92	5	0.621		8	92	4	0.621
	30	FRN030G11S-2UX	40	FRN040P11S-2UX		1	DB22-2	1		8	88	5	0.738		6	88	3.5	0.738
	40	FRN040G11S-2UX	50	FRN05OP11S-2UX	BU37-2C	1	DB30-2C	1	100\%	10	150	10	2.012	75\%	8	150	8	2.012
	50	FRN050G11S-2UX	60	FRN060P11S-2UX		1	DB37-2C	1		10	185	10	2.481		8	185	8	2.481
	60	FRN060G11S-2UX	75	FRN075P11S-2UX	BU55-2C	1	DB45-2C	1		10	225	10	3.017		8	225	8	3.017
	75	FRN075G11S-2UX	100	FRN100P11S-2UX		1	DB55-2C	1		10	275	10	3.688		7	275	7	3.688
	100	FRN100G11S-2UX	125	FRN125P11S-2UX	BU90-2C	1	DB75-2C	1		10	375	10	5.029		8	375	8	5.029
	125	FRN125G11S-2UX	150	FRN150P11S-2UX		1	DB90-2C	1		10	450	10	6.035		8	450	8	6.035
ree-	1/2	FRNF50G11S-4UX	-	-	-	-	DB0.75-4	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$		45	9	22	0.059	-	-	-	-	-
phase	1	FRN001G11S-4UX								45	17	18	0.091					
	2	FRN002G11S-4UX					DB2.2-4			45	34	10	0.101					
	3	FRN003G11S-4UX								30	33	7	0.103					
	5	FRN005G11S-4UX	7.5	FRN007P11S-4UX	-	-	DB3.7-4	1		20	37	5	0.125	100\%	15	37	3.5	0.125
	7.5	FRN007G11S-4UX	10	FRN010P11S-4UX	-	-	DB5.5-4	1		20	55	5	0.185		15	55	3.5	0.185
	10	FRN010G11S-4UX	15	FRN015P11S-4UX	-	-	DB7.5-4	1		10	38	5	0.252		7	38	3.5	0.252
	15	FRN015G11S-4UX	20	FRN020P11S-4UX	BU22-4C	1	DB11-4	1		10	55	5	0.369		7	55	3.5	0.369
	20	FRN020G11S-4UX	25	FRN025P11S-4UX		1	DB15-4	1		10	75	5	0.503		8	75	4	0.503
	25	FRN025G11S-4UX	30	FRN030P11S-4UX		1	DB18.5-4	1		10	93	5	0.621		8	93	4	0.621
	30	FRN030G11S-4UX	40	FRN040P11S-4UX		1	DB22-4	1		8	88	5	0.738		6	88	3	0.738
	40	FRN040G11S-4UX	50	FRN050P11S-4UX	BU37-4C	1	DB30-4C	1	100\%	10	150	10	2.012	75\%	8	150	8	2.012
	50	FRN050G11S-4UX	60	FRN060P11S-4UX		1	DB37-4C	1		10	185	10	2.481		8	185	8	2.481
	60	FRN060G11S-4UX	75	FRN075P11S-4UX	BU55-4C	1	DB45-4C	1		10	225	10	3.017		8	225	8	3.017
	75	FRN075G11S-4UX	100	FRN100P11S-4UX		1	DB55-4C	1		10	275	10	3.688		7	275	7	3.688
	100	FRN100G11S-4UX	125	FRN125P11S-4UX	BU90-4C	1	DB75-4C	1		10	375	10	5.029		8	375	8	5.029
	125	FRN125G11S-4UX	150	FRN150P11S-4UX		1	DB110-4C	1		10	450	10	6.035		8	450	8	6.035
	150	FRN150G11S-4UX	200	FRN200P11S-4UX	BU132-4C	1	DB110-4C	1		10	550	10	7.376		8	550	8	7.376
	200	FRN200G11S-4UX	250	FRN250P11S-4UX		1	DB132-4C	1		10	665	10	8.918		8	665	8	8.918
	250	FRN250G11S-4UX	300	FRN300P11S-4UX	BU220-4C	1	DB160-4C	1		10	800	10	10.728		8	800	8	10.728
	300	FRN300G11S-4UX	350	FRN350P11S-4UX		1	DB200-4C	1		10	1000	10	13.410		9	1000	9	13.410
	350	FRN350G11S-4UX	400	FRN400P11S-4UX		1	DB220-4C	1		10	1100	10	14.751		8	1100	8	14.751
	400	FRN400G11S-4UX	450	FRN450P11S-4UX		2	DB160-4C	2		11	1600	11	21.456		10	1600	10	21.456
	450	FRN450G11S-4UX	500	FRN500P11S-4UX		2	DB160-4C	2		10	1600	10	21.456		9	1600	9	21.456
	500	FRN500G11S-4UX	600	FRN600P11S-4UX		2	DB200-4C	2		11	2000	11	26.820		10	2000	10	26.820
	600	FRN600G11S-4UX	700	FRN700P11S-4UX		2	DB200-4C	2		10	2000	10	26.820		9	2000	9	26.820
	-	-	800	FRN800P11S-4UX		2	DB200-4C	2		-	-	-	-		8	2000	8	26.820

NOTES: 1) Each model of the P11S series uses options that are one-class smaller than the options for the G11S series of the same capacity.
2) The braking time and duty cycle (\%) are calculated as the rated-torque braking used for deceleration.

[Procedure for selecting options]
All three conditions listed below must be satisfied.
(1) The maximum braking torque does not exceed the value shown in the table.
(2) The energy discjarged in the resistor for each braking (the area of the triangle shown in the above figure) does not exceed th e discharging capability (kWs) in the
(3) The average loss (energy discharged in the resistor divided by a braking interval) does not exceed the average loss (kW) shown in the table.

Option cards and other options

Name (type)	Function	Specifications			
Relay output card (OPC-G11S-RY)	- Includes four relay output circuits. - Converts transistor output signals from inverter control output terminals Y1 to Y4 to relay (SPDT) output signals.				
Digital I/O interface card (OPC-G11S-DIO)	- For setting frequency using a binary code. - For monitoring frequency, output current, and output voltage using a binary code. - For input and output of other individual signals.				
Analog I/O interface card (OPC-G11S-AIO)	- For setting a torque limit value using an input analog signal. - For input of auxiliary signal to set frequency. - For analog monitoring of inverter output frequency, output current, and torque.				
T-link interface card (OPC-G11S-TL)	- For setting a frequency. - For setting, reading, and storing function data for function codes. - For setting operation commands (FWD, REV, RST, etc.). - For monitoring the operation status. - For reading trip information.	- Used together with MICREX-F series PLC.			
Open bus card	It is an optional card conforming to various open buses. The following operation can be made from the personal computer and PLC. - Setting of running frequency - Setting of operation command (FWD,REV,RST,etc.) - Setting/reading of data code of each function code - Monitoring running frequency and operation status	Correspondent bus		Option type	
		PROFIBUS-DP DeviceNet Modbus Plus Interbus-S CAN open		OPC-G11S-PDP OPC-G11S-DEV OPC-G11S-MBP OPC-G11S-IBS OPC-G11S-COP	
RS-232C communication adaptor (OPC-G11S-PC)	The RS-232C communication can be done by connecting it to the keypad panel on the main body of the inverter.				
Personal computer loader	- The operation status monitoring and the parameter setting can be made through the inverter's RS-485 interface from the host personal computer. - The parameter can be read and written collectively or individually. - Comparison of two arbitrary parameters. - Monitor of output frequency, output current, and operation status of inverter. - Monitor of alarm history and operation information on alarm.	Communication - Physical level : EIA-RS-485 - The number of units connected : Maximum 31 inverters - Synchronous method : start-stop synchronization - Transmission method : half duplex			
PG feedback card (OPC-G11S-PG)	- For performing PG vector control using feedback signals obtained from a PG.	Applicable Pulse Encoder specification: - 100 to 3000P/R • A, B, Z phase • 12V or 15V			
PG feedback card (OPC-G11S-PG2)	- For performing PG vector control using feedback signals obtained from a PG.	Applicable Pulse Encoder specification: - 100 to 3000P/R • A, B, Z phase • 5V			
Synchronized operation card (OPC-G11S-SY)	- Speed control by pulse train input can be made.	Applicable Pulse Encoder specification: - 20 to $3000 \mathrm{P} / \mathrm{R} \cdot \mathrm{A}, \mathrm{B}, \mathrm{Z}$ phase • 12 V or 15 V			
Extension cable for keypad panel (CBIII-10R- $\square \square$)	Connects the keypad panel to an inverter unit. Three cable types are available: straight $6.56 \mathrm{ft}(2 \mathrm{~m})$, curled $3.28 \mathrm{ft}(1 \mathrm{~m})$, and curled $6.56 \mathrm{ft}(2 \mathrm{~m})$. The curled $3.28 \mathrm{ft}(1 \mathrm{~m})$ cable can be extended up to $16.4 \mathrm{ft}(5 \mathrm{~m})$, and the curled $6.56 \mathrm{ft}(2 \mathrm{~m})$ cable up to $32.8 \mathrm{ft}(10 \mathrm{~m})$. Note: Cables once extended to the maximum length do not return to their original length.	Type	Nominal length		Maximum length
		CBIII-10R-2S	$6.56 \mathrm{ft}(2 \mathrm{~m})$		$6.56 \mathrm{ft}(2 \mathrm{~m})$
		CBIII-10R-1C	$3.28 \mathrm{ft}(1 \mathrm{~m})$		$16.4 \mathrm{ft}(5 \mathrm{~m})$
		CBIII-10R-2C	$6.56 \mathrm{ft}(2 \mathrm{~m})$		$32.8 \mathrm{ft}(10 \mathrm{~m})$
NEMA1 cover kit	- Used to put 40HP or larger models to change its enclosure of IP00 into that of NEMA1.	Type	Applicable inverter type		
		NEMA1-30G11-2	FRN040G11S-2UX		
		NEMA1-55G11-2	FRN050G11S-2UXFRN075G11-2UX		
		NEMA1-75G11-2	FRN075G11S-2UX		
		NEMA1-90G11-2	FRN125G11S-2UX		
		NEMA1-30G11-4	FRN040G11S-4UX		
		NEMA1-55G11-4	FRN050G11S-4UX		
			FRN075G11S-4UX		
		NEMA1-75G11-4	FRN100G11S-4UX		
		NEMA1-110G11-4	FRN125G11S-4UX		
		NEMA1-160G11-4	FRN200G11S-4UX		
		NEMA1-220G11-4	FRN300G11S-4UX		
Mounting adapter for external cooling (PBG11- $\square \square$)	- Used to put the cooling fan section of the inverter outside the panel. - Only applicable to 30HP and below inverters. (40HP and above inverters can be modified to external cooling type by replacing the mounting bracket, as standard.)	Type Ap	pplicable inverter type		
		PBG11-0.75	RNF50G11S-4UX to FRNO01G11S4UX		
		PBG11-3.7	RNo02G11S-4UX to FRNO05G11S-4UX RN002G11S-2UX to FRN005G11S-2UX		
		PBG11-7.5	FRN007G11S4UX, 2UX to FRN010G11S-4UX, 2UX FRNO07P11S-4UX, 2UX to FRN015P11S-4UX, 2UX		
		PBG11-22	FRNO15G11S-4UX 2UX to FRN030G11S-4UXX $2 U X$FRNO20P11-4UX, $2 U X$ to FRNO30P11S-4UX, $2 U X$		
Panel-mount adapter (MAG9- \qquad	Used to put an FRN-G11S inverter to be mounted in panel holes that were used to mount an FVR-G7S inverter.	Type ${ }^{\text {ap }}$	pplicable inverter type		
		MAG9-3.7 7	RNF50G11S-4UX to FRNO05G11S-4UX		
		MAG9-7.5 ${ }^{\text {P }}$ FR	RN007G11S-4UX to FRN010G11S-4UX RN007G11S-2UX to FRN010G11S-2UX		
		MAG9-22	FRN015G11S-4UX to FRNo30G11S-4UX FRN015G11S-2UX to FRN030G11S2UX		

NOTES :

- For molded-case circuit breakers (MCCB) and a ground-fault circuit interrupter(GFCI), the required frame type and series depend on the facility
transformer capacity and other factors. When selecting optimal breakers, refer to the relevant technical data.
- Also select the rated sensitive current of GFCI utilizing the technical data
- The recommended wire sizes are based on the condition that the temperature inside the panel does not exceeds $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$.
- The above wires are 600 V HIV insulated cables $\left(75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)\right)$.
- Data in the above table may differ for different conditions (ambient temperature, power supply voltage, and other factors).
*Contact Fuji Electric FA.

To all our customers who purchase
 Fuji Electric FA Components \& Systems' products:

Please take the following items into consideration when placing your order.

When requesting an estimate and placing your orders for the products included in these materials, please be aware that any items such as specifications which are not specifically mentioned in the contract, catalog, specifications or other materials w be as mentioned below.
In addition, the products included in these materials are limited in the use they are put to and the place where they can be us ed, etc., and may require periodic inspection. Please confirm these points with your sales representative or directly with this company.
Furthermore, regarding purchased products and delivered products, we request that you take adequate consideration of the necessity of rapid receiving inspections and of product management and maintenance even before receiving your products.

1. Free of Charge Warranty Period and Warranty Range

1-1 Free of charge warranty period

(1) The product warranty period is "1 year from the date of purchase" or 18 months from the manufacturing date imprinted on the name place, whichever date is earlier.
(2) However, in cases where the use environment, conditions of use, use frequency and times used, etc., have an effect on product life, this warranty period may not apply.
(3) Furthermore, the warranty period for parts restored by Fuji Electric's Service Department is " 6 months from the date that repairs are completed."

1-2 Warranty range

(1) In the event that breakdown occurs during the product's warranty period which is the responsibility of Fuji Electric, Fuji Electric will replace or repair the part of the product that has broken down free of charge at the place where the product was purchased or where it was delivered. However, if the following cases are applicable, the terms of this warranty may not apply.

1) The breakdown was caused by inappropriate conditions, environment, handling or use methods, etc. which are not specified in the catalog, operation manual, specifications or other relevant documents.
2) The breakdown was caused by the product other than the purchased or delivered Fuji's product.
3) The breakdown was caused by the product other than Fuji's product, such as the customer's equipment or software design, etc.
4) Concerning the Fuji's programmable products, the breakdown was caused by a program other than a program supplied by this company, or the results from using such a program.
5) The breakdown was caused by modifications or repairs affected by a party other than Fuji Electric.
6) The breakdown was caused by improper maintenance or replacement using consumables, etc. specified in the operation manual or catalog, etc.
7) The breakdown was caused by a chemical or technical problem that was not foreseen when making practical application of the product at the time it was purchased or delivered.
8) The product was not used in the manner the product was originally intended to be used.
9) The breakdown was caused by a reason which is not this company's responsibility, such as lightning or other disaster.
(2) Furthermore, the warranty specified herein shall be limited to the purchased or delivered product alone.
(3) The upper limit for the warranty range shall be as specified in item (1) above and any damages (damage to or loss of machinery or equipment, or lost profits from the same, etc.) consequent to or resulting from breakdown of the purchased or delivered product shall be excluded from coverage by this warranty.

1-3. Trouble diagnosis

As a rule, the customer is requested to carry out a preliminary trouble diagnosis. However, at the customer's request, this company or its service network can perform the trouble diagnosis on a chargeable basis. In this case, the customer is asked to assume the burden for charges levied in accordance with this company's fee schedule.

2. Exclusion of Liability for Loss of Opportunity, etc.

Regardless of whether a breakdown occurs during or after the free of charge warranty period, this company shall not be liable for any loss of opportunity, loss of profits, or damages arising from special circumstances, secondary damages, accident compensation to another company, or damages to products other than this company's products, whether foreseen or not by this company, which this company is not be responsible for causing.
3. Repair Period after Production Stop, Spare Parts Supply Period (Holding Period)

Concerning models (products) which have gone out of production, this company will perform repairs for a period of 7 years after production stop, counting from the month and year when the production stop occurs. In addition, we will continue to supply the spare parts required for repairs for a period of 7 years, counting from the month and year when the production stop occurs. However, if it is estimated that the life cycle of certain electronic and other parts is short and it will be diff icult to procure or produce those parts, there may be cases where it is difficult to provide repairs or supply spare parts even within this 7 -year period. For details, please confirm at our company's business office or our service office.

4. Transfer Rights

In the case of standard products which do not include settings or adjustments in an application program, the products shall be transported to and transferred to the customer and this company shall not be responsible for local adjustments or trial operation.

5. Service Contents

The cost of purchased and delivered products does not include the cost of dispatching engineers or service costs. Depending on the request, these can be discussed separately.

6. Applicable Scope of Service

The above contents shall be assumed to apply to transactions and use of this company's products within the nation of Japan. Please discuss transactions and use outside Japan separately with the local supplier where you purchased the products, or with this company.

Memo

In running general-purpose motors

- Driving a 460V general-purpose motor When driving a 460 V general-purpose motor with an inverter, damage to the insulation of the motor ma y occur. Use an output circuit filter (OFL) if necessar y after chec king with the motor man ufacturer. Fuji's motors do not require the use of output circuit filters because of their reinforced insulation.
- Torque characteristics and temperature rise When the in verter is used to r un a gener al-purpose motor, the temperature of the motor becomes higher than when it is oper ated using a commercial po wer supply. In the low-speed range, the cooling effect will be weakened, so decrease the output torque of the motor. If constant torque is required in the lo w-speed range, use a Fuji in verter motor or a motor equipped with an externally powered ventilating fan.

- Vibration

Use of an in verter does not increase vibr ation of a general-purpose motor, but when the motor is mounted to a machine, resonance may be caused by the natural frequencies, including that of the machine system. *The use of a rubber coupling or vibration dampening rubber is recommended.

* It is also recommended to use the inverter jump frequency control to avoid resonance points. Note that oper ation of a 2-pole motor at 60 Hz or more may cause abnormal vibration.

- Noise

When an in verter is used with a gener al-purpose motor, the motor noise le vel is higher than that with a commercial po wer supply. To reduce noise , r aise carrier frequency of the inverter. High-speed operation at 60 Hz or more can also result in more noise.

In running special motors

- Explosion-proof motors

When dr iving an e xplosion-proof motor with an inverter, use a combination of a motor and an inverter that has been appro ved in adv ance. Such approved products are a vailable in our special product series. Contact Fuji Electric FA for details.

- Submersible motors and pumps

These motors ha ve a larger r ated current than general-purpose motors. Select an in verter whose rated output current is greater than that of the motor. These motors differ from general-purpose motors in thermal char acteristics. Set a lo $w v$ alue in the thermal time constant of the motor when setting the electronic thermal facility.

- Brake motors

For motors equipped with par allel-connected brakes, their braking power must be supplied from the inverter input side (the pr imary circuit). If the br ake power is connected to the in verter po wer output side (the secondary circuit) by mistake, problems may occur. Do not use in verters for dr iving motors equipped with series-connected brakes.

- Geared motors

If the po wer transmission mechanism uses an oillubricated gearbox or speed changer/reducer, then continuous motor oper ation at lo w speed ma y cause poor lubrication. Avoid such operation.

- Synchronous motors

It is necessar y to use softw are suitab le for this motor type. Contact Fuji Electric FA for details.

- Single-phase motors

Single-phase motors are not suitab le for in verterdriven v ariable speed oper ation. Use three-phase motors.

* Even if a single-phase power supply is available, use a three-phase motor as the inverter provides three-phase output.

Environmental conditions

- Installation location

Use the in verter in a location with an ambi ent temperature range of -10 to $50^{\circ} \mathrm{C}\left(14\right.$ to $\left.122^{\circ} \mathrm{F}\right)$. The in verter heat sinks and br aking resistor surf aces become hot under cer tain operating conditions. Install the inverter on nonflammable material such as metal. Ensure that the installation location meets the environmental conditions specified in "Environment" in Common specifications on page 11. For inverters of 30 HP or smaller, remove the ventilation covers when operating it at a temperature of $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ or higher.

Combination with peripheral devices

- Installing a molded case circuit breaker (MCCB) or a ground-fault circuit interrupter (GFCI) Install a recommended molded case circuit break er (MCCB) or a ground-fault circuit interrupter (GFCI) (with the e xception of those e xclusively designed for protection from g round f aults) in the pr imary circuit of the in verter to protect the wir ing. Ensure that the circuit break er capacity is equiv alent to or lower than the recommended capacity.
- Installing a magnetic contactor (MC) on the inverter power output side (the secondary circuit)
If a magnetic contactor (MC) is mounted on the inverter power output side (the secondary circuit) for switching the motor to commercial po wer or for any other purpose, turn the MC on or off while both the inverter and the motor are fully stopped.
Remove the surge suppressor integrated with the MC. For s witching oper ation from/to commercial po wer supply, use of ne wly de veloped "Line/inverter changeover oper ation" function using ter minals such as SW88, SW52-2, SW52-1, SW50, is recommended.

- Installing a magnetic contactor (MC) on

 the inverter input side (the primary circuit) Do not tur n the magnetic contactor (MC) on the inverter input side (the pr imary circuit) on or off more than once an hour as an in verter fault may result. If frequent starts or stops are required dur ing motor operation, use FWD/REV signals.
- Protecting the motor

When dr iving a motor with an in verter, the electronic thermal facility of the inverter can protect the motor. The operation le vel and the motor type (gener al-purpose motor, in verter motor) should be set. F or high-speed motors or water-cooled motors, set a small value for the thermal time constant to protect the motor combination with the "cooling system OFF" signal. When driving several motors with an in verter, connect a ther mal rela y to each motor and tur n on the inverter's electronic thermal relay facility. If you connect the motor ther mal relay to the motor with a long cable, a high-frequency current may flow into the wiring stray capacitance. This may cause the relay to trip at a current lo wer than the set v alue for the ther mal relay. If this happens, lo wer the carr ier frequency or use the output circuit filter (OFL).

- Discontinuance of power-factor correcting capacitor Do not mount po wer-factor correcting capacitors in the inverter primary circuit. (Use the DC REA CTOR
to impro ve the in verter po wer-factor.) Do not use power-factor correcting capacitors in the in verter output circuit. An o vercurrent tr ip will occur disabling motor operation.
- Discontinuance of surge killer Do not mount surge killers in the in verter secondary circuit.

- Reducing noise

Use of a filter and shielded wires are typical measures against noise to ensure that EMC Directiv es are met. Refer to Appendices, App. A "Advantageous Use of Inverters (Notes on electrical noise)" for details.

- Measures against surge currents

If an o vervoltage tr ip occurs while the in verter is stopped or operated under a light load, it is assumed that the surge current is gener ated by open/close of the phase-advancing capacitor in the power system. * Connect a DC REACTOR to the inverter.

- Megger test

When chec king the insulation resistance of the inverter, use a 500 V megger and follow the instructions contained in the FRN-G11S/P11S Instruction Manual.

Wiring

- Control circuit wiring length

When using remote control, limit the wir ing length between the in verter and oper ator bo x to 65.6 ft (20 m) or less and use twisted shielded cable.

- Wiring length between inverter and motor If long wiring is used between the inverter and the motor, the inverter will overheat or trip as a result of overcurrent (high-frequency current flo wing into the str ay capacitance) in the wires connected to the phases Ensure that the wir ing is shor ter than $164 \mathrm{ft}(50 \mathrm{~m})$ for 5 HP or less, and shorter than $328 \mathrm{ft}(100 \mathrm{~m})$ for 7.5 HP or more. If this length m ust be exceeded, lower the carr ier frequency or mount an output circuit filter (OFL). When wir ing is longer than 164 ft (50 m), and Dynamic torque-vector control or v ector with PG is selected, execute off-line auto-tuning.

- Wiring size

Select cables with a sufficient capacity b y referring to the current value or recommended wire size.

- Wiring type

Do not use multicore cables.

- Grounding

Securely g round the in verter using the g rounding terminal.

Selecting inverter capacity

- Driving general-purpose motor

Select an inverter according to the applicable motor ratings listed in the standard specifications tab le for the inverter. When high starting torque is required or quick acceleration or deceleration is required, select an inverter with a capacity one size greater than the standard.

- Driving special motors

Select an inverter that meets the following condition: Inverter rated current > Motor rated current

Transportation and storage

When tr ansporting or stor ing in verters or in verters while mounted on machines, follow the procedures and select locations that meet the en vironmental conditions listed in the FRN-G11S/P11S Instr uction Manual.

[^0]: 1. Use the contents of this catalog only for selecting product types and models. When using a product, read the Instruction Manual beforehand to use the product correctly
 2. Products introduced in this catalog have not been designed or manufactured for such applications in a system or equipment that will affect human bodies or lives. Customers, who want to use the products introduced in this catalog for special systems or devices such as for atomic-energy control, aerospace use, medical use, and traffic control, are requested to consult the Fuji's Sales Division. Customers are requested to prepare safety measures when they apply the products introduced in this catalog to such systems or facilities that will affect human lives or cause severe damage to property if the products become faulty.
[^1]: NOTES: *1) Inverter output capacity (kVA) at 460 V in $460 \mathrm{~V}, 230 \mathrm{~V}$ in 230 V . ${ }^{*}$) Output voltage is proportional to the power supply vol tage and cannot exceed the power supply

[^2]: NOTES: *1) Inverter output capacity (kVA) at 460 V in $460 \mathrm{~V}, 230 \mathrm{~V}$ in 230 V . *2) Output voltage is proportional to the power supply vol
 tage and cannot exceed the power supply voltage. *3) Current derating may be required in case of low impedance loads such as high frequency motor. *4) When the inp ut voltage is $380 \mathrm{~V} / 50 \mathrm{~Hz}$ or 380 to $415 \mathrm{~V} / 60 \mathrm{~Hz}$, the tap of the auxiliary transformer must be changed. *5) Order individually. *6) Refer to the IEC 61800-3(5.2 .3). *7) Tested a t standard load condition (85% load). *8) This value is under FUJI original calculation method. (Refer to the Technical Information.) *g) When power-factor correcting DC reactor (DC R) is used. *10) With a nominal applied motor, this value is average torque when the motor decelerates and stops from 60 Hz . (It may change according to motor loss.)

[^3]: The functions in the yellow boxes can be set while the inverter is running. Other functions must be set while the inverter is stopped.

