Fe
Variable Torque Load Inverters for Fans and Pumps FRENIC-ECO Series

Variable Torque AC Drives for Fans and Pumps!

70. Enhanced Energy Savings
 Optimizing Energy-Savings for the complete system

In addition to optimizing the control of the applied motor for Energy-Savings, FRENIC Eco series drives also optimizes power consumption of the drive for maximizing EnergySavings for the complete system. With regulations expected to call for a reduction of 1% or more in annual energy consumption, Fuji Electric is aiming to optimize energysavings as a complete system approach and not focusing only on reducing energy consumed by the motor.

Using this new system, energy savings is several percent improved over that of the previous models.
Kyoto Agreement, which was studied at the Conference on Prevention of Global Warming (COP3), was ratified by Russia in October 2004, and thereby put into effect on February 16, 2005. In the future, the related regulations are calling for a reduction in energy consumption of 1% or more each succeeding year, and therefore, we are aiming to build energy saving features into equipment as a whole.FRENIC-Eco is the inverter equipped with the industry's highest level of efficiency (low power loss).

Power Monitor

Power-related data can be checked via the inverter unit's keypad.

Items
Power (kW)
Cumulative power (kWh)
Cumulative power rates $(\$ / k W h)$

* Cumulative values can be reset. Cumulative power rates are shown with the power rate set at so much per kWh (display coefficient). Rates in other currency can also be displayed.

■Energy saving effect compared with Fuji's previous models

(The effect varies dependent on the motor's characteristics.)

Long life design that meets your expectation

Built with longer lasting replaceable components to give a longer service life.)
The design life of replaceable components in each inverter model has been extended to $\mathbf{1 0}$ years. In addition, the capacity of the main circuit capacitors is measured and temperature compensation carried out to match the cumulative operating time of the electrolytic capacitors on the printed circuit board.

Life-limited component name	Designed life
Main circuit capacitors	10 years
Electrolytic capacitors on printed circuit board	10 years
Cooling fan (Note)	10 years

Saves energy and cuts costs.

Maintenance is simplified for both the drive and equipment

The service life information for replaceable inverter components is displayed.

Cooling fan replacement procedure
-20HP model

Cooling cover can be removed with one touch.
-60HP model

The inverter's mounting screws and power connector can be removed from the front.

The cooling fan cartridge can be replaced by sliding the holder out to the front

In addition to maintenance information for the inverter unit, information related to equipment maintenance is also displayed.

Item	Purpose
Motor cumulative	
operating time	
(hours)	The cumulative operating time of the equipment the inverter is used with is calculated. Example of Use If the inverter is used for fan control, this time can be used as a criterion for replacing the belts used on pulleys.
Number of starts	The number of times the inverter is run and stopped can be counted. (times) Example of Use The number of times the equipment is started and stopped is recorded, so this can be used as a criterion for replacing parts in equipment where starting and stopping is a burden on the machine.

Equipped with the optimum functions for HVAC (Air conditioning systems)

Operation iscontinued venanater the momentary power railure thanksto the alororestartunction.

Even if a momentary power failure occurs, load inertia of a fan or blower, etc. is used to maintain the motor's operation while the motor's operating speed gradually drops, and enables the motor to restart operation without stopping. (The motor may stop on occasion due to the load's inertia.)

Tripless operation through regenerated current avoidance control

Deceleration time is controlled to match the internal energy level generated in the inverter, and so deceleration and stopping is accomplished without tripping due to overload.

The equipnenis'spepating condition isdedemmined by yhe ow loquevedelection tunction.

The inverter determines the load state of the connected motor and if it drops below a predetermined level, it judges that a "Low Torque" state exists and outputs a signal to that effect. In this way, any trouble that occurs in the equipment (such as a belt on a pulley breaking) can be detected by the inverter.

A pick-up function provides smooth starts.

If you desire to run a fan which the inverter is not currently running and which is turning free. This function will pick up on its motion regardless of the direction it is turning and take operation. Momentary switching is performed in the inverter from the commercial power supply and provides a convenient function when starting motors, etc.

Even greater energy savings through the low water volume stop tunction

When there is pump operation accompanying "pressure drop" that occurs due to pressure loss or leakage, etc. in the piping, etc., or a t imes when the pump runs repeatedly to obtain a small volume of water, this function controls the pump's operation, preventing it from being driven with the water volume below a predetermined level, and thus reducing wasteful pump operation and saving even more energy.

Also avoids operation signal trouble throught the coommand loss deection tuncion.

If the frequency signals (0 to $10 \mathrm{~V}, 4$ to 20 mA , multi-step speed operation signals, communications, etc.) that are connected to the inverter are lost, signals are output as a "command loss," indicating that a frequency command was lost. In addition, output frequency when the command loss occurred can be set in advance, so even if a frequency signal line to equipment is broken due to machine vibration, etc., machine operation can be continued uninterrupted.

Simple circuit configuration using the commercial line switching sequence
Inverters are equipped with the commercial line start function that enables switching between the commercial line and the inverter by an external sequence. In addition, inverters are equipped with two types of built-in sequence for operation with commercial line; i.e., Fuji's standard sequence and the automatic switching sequence to the commercial line activated when the inverter alarm occurs.
Note: The latter sequence differs from the one for forcible switching to the commercial line during inverter breakdown.
Inverters are equipped with full PID control functions.
Low water level stop function, deviation alarm and absolute value alarm outputs have been added to the PID regulator which performs such tasks as temperature, pressure and flow rate control. In addition, an anti-reset windup function that prevents PID control overshoot as well as a PID output limiter and integral hold/reset signal provide easy-to-adjust PID control functions.

Simple Sequences through Universal DI/DO

Signals can be transmitted to a higher level controller or PC by connecting digital signals to an inverter from different types of sensors, such as a float switch used to judge the level in a water storage tank, which serve as peripheral devices to the inverter. In the case of small-scale equipment, even if a programmable logic controller (PLC) is not used, information can be sent to a higher-level system easily.

Improved capability for handling regenerated energy

When the inverter slows down and stops the motor, if the braking energy regenerated by the motor exceeds the braking capacity of the inverter's main circuit capacitor, the inverter will trip. At such a time, if even a little excess energy trips the inverter, using this function you may be able to absorb the excess braking energy without connecting to a braking resistor.

Continuous equipment operation through overload avoidance control
If the load on a fan or pulley increases due some foreign object overloading around the shaft, etc., and the inverter's internal temperature rises suddenly or the ambient temperature rises to an abnormal level, etc., causing an inverter overload state, the motor's speed is lowered, reducing the load and enabling operation to continue.

Elimination of display devices by use of the analog input monitor

Using the display coefficient of signals from devices such as flow rate or temperature sensors in air conditioning equipment, these signals can be converted into physical values such as temperature and pressure and displayed on the inverter's keypad without making the use of exclusive flow meters or air flow meters.

Other convenient functions

- Motor condensation prevention function

Prevents condensation of the motor from occurring in cases where the surrounding temperature changes suddenly while the motor is stopped.

OMotor speed display with percent

The inverter's keypad displays the operating frequency (Hz) or the motor's rotational speed ($\mathrm{r} / \mathrm{min}$), but it can also display the maximum speed as 100%, so it is easy to get a grasp of the equipment's operating state.

Dynamic Rotation of Pump Motors

-With a fixed inverter-driven motor

This configuration consists of a motor driven by the inverter (M0) and motors driven by commercial power (M1 to M4).
The inverter-driven motor is fixed at M0 and is controlled for variable speed. When the inverter-driven motor M0 alone cannot sustain the desired discharge flowrate, the inverter starts one or more motors driven by commercial power as necessary.

OWith a floating inverter-driven motor

In this configuration, all the motors can be driven by the inverter or commercial power. At the start of operation, each motor is driven by the inverter and is controlled for varying speed. When the first motor alone cannot sustain the desired discharge flowrate, it is switched to commercial-power operation, and the inverter drives the second motor.

Consideration of the surrounding environment and panel design

Side-by-side installation saves space!

If multiple inverter units are to be used in a panel and the panel is designed accordingly, it is possible to mount these inverters side-byside horizontally, so the panel can be designed to take up less space. (5HP for $208 \mathrm{~V}, 7.5 \mathrm{HP}$ for 460 V or smaller capacity inverters)

Built-in charging resistors (in rush current suppressing resistors) help reduce peripheral equipment sizing!

When the FRENIC-Eco series (Fuji's FRENIC-Mini Series and 11 Series) is used, the charging resistors (in rush current suppressing resistors) built into the inverter as standard equipment suppress in rush current when motors are started, so compared to operation of motors with direct input, peripheral equipment with reduced capacity can be selected.

Cooling outside the panel is made possible by an external cooling attachment!

Use of the external cooling attachment (optional on 30 HP for $208 \mathrm{~V}, 40 \mathrm{HP}$ for 460 V or smaller inverters and standard on 40HP for $208 \mathrm{~V}, 50 \mathrm{HP}$ for 460 V or larger inverters) to cool the inverter outside the panel makes it possible to install a simple cooling system outside the panel.

A keypad that enables remote operation is standard equipment.

The standard keypad has a decorative cover on the bottom that can be slid sideways and removed. A LAN cable can be used to connect the panel, making it possible to use it as a remote operation keypad.

A multi-function keypad is available as standard.

Includes an easier to see LCD with backlight.

- It has a large 7-segment, 5 -digit LED display.
- It is possible to add and delete quick setup items.
- A remote/local key has been added.
- Copying up to 3 sets of data is possible.

Personal computer loader software

Store, manage and verify settings data.

RS-485 communication is standard.
Selectable from Modbus-RTU, Metasys-N2, FLN P1.

- It is compatible with the following networks by inserting the option card.

```
-Device Net
- LonWorks Network
- PROFIBUS-DP
- BACnet (available soon)
```


- Compliance with standards - Synk/source switchable - Wide voltage range - Multi-function keypad displaying multiple languages (Japanese, English, German, French, Spanish, Italian)

Model List

Frolicable

How to read the model number

How does using an inverter save me energy？

－If you run a fan or pump and you have damper（valve）control or control it with an inverter，the relation between the air flow（flow rate）and the required power，as well as the relation between the power supply frequency $\mathrm{fs}(\mathrm{Hz})$ and operating frequency with the inverter fiNV (Hz) are as shown in the table at right．
－If the air flow rate is low，the energy saving effect is particularly great．

Item	Relation between $\mathrm{f}_{\mathrm{s}}(\mathrm{Hz})$ and fiNV（Hz）（Note 1）	Examples with actual numbers（Note 2）	
		fiv＝45［Hz］（10\％DOWN）	five30［Hz］（40\％DOWN）
Air flow or flow rate Q ［⿳⺈⿴囗十一⿳一巛⿴囗十／min］	$Q \propto\left(\frac{f_{\text {finv }}}{f_{s}}\right)$	$Q=\frac{45}{50} \cdot \mathrm{Q}=0.9 \cdot \mathrm{Q}$	$Q=\frac{30}{50} \cdot Q=0.6 \cdot Q$
Head $\mathrm{H}(\mathrm{m})$ or pressure $\mathrm{H}[\mathrm{Pa}]$	$H \propto\left(\frac{f_{\text {mv }}}{f_{s}}\right)^{2}$	$\mathrm{H}=\left(\frac{45}{50}\right)^{2} \cdot \mathrm{H}=0.81 \cdot \mathrm{H}$	$\mathrm{H}=\left(\frac{30}{50}\right)^{2} \cdot \mathrm{H}=0.36 \cdot \mathrm{H}$
Shatt power or power consumption P［W］	$P \propto\left(\frac{f_{\text {wv }}}{f_{s}}\right)^{3}$	$\mathrm{P}=\left(\frac{45}{50}\right)^{3} \cdot \mathrm{P}=0.729 \cdot \mathrm{P}$	$\mathrm{P}=\left(\frac{30}{50}\right)^{3} \cdot \mathrm{P}=0.216 \cdot \mathrm{P}$

Note 1：Power supply frequency fs（Hz）；operating frequency with the inverter fiNV（Hz）Note 2：When fs $=50(\mathrm{~Hz})$ Note 1：Power supply frequency fs（Hz）；operating frequency with
gs effect achieved oy an inverter

Formula（theoretical）for calculating the energy saving

－Fan equipment

Energy savings effect in monetary terms：Ms（\＄／year）
Power charges Power charges MINV
$=\quad[\$ / y e a r]$ at the time the $-\quad$ when an inverter is damper was used used［\＄／year］
■ Power charges when a damper is used：Mo［\＄／year］
$=(P \times(1-B) \times Q+P \times B) \times \frac{1}{\eta_{M}} \times D \times H \times M$
－Power charges when an inverter is used：MINV［\＄／year］ $=\left(P \times\left(\frac{f_{R U N}}{f_{s}}\right)^{3}\right) \times \frac{1}{\eta_{M}} \times \frac{1}{\eta_{\text {INV }}} \times D \times H \times M$

P：Motor capacity（kW）
B：Damper reduction rate（\％）
Q：Air flow（\％）

D：Annual operating days（day／year）
H：Operating hours per day（h／day）
M：Power charge unit price（ $\$ / k W h$ ）
Fruv：Inverter operating frequency（ Hz ）$\quad \eta_{\mathrm{m}}$ ：Motor efficiency（\％）
F_{s} ：Power supply frequency（ Hz ）
$\eta_{\text {ıv：}}$ Inverter efficiency（\％）
（Note 1）The air flow rate $\mathrm{Q}(\%)$ shows the air flow when the damper is closed（\％）．The operating frequency fan（ Hz ）when using an inverter is being proportional to the air flow $Q(\%)$ ，so decide on a fane（ Hz ）value so that the relationship $Q(\%)=$ frun（Hz）／fs（Hz）is established．
For example，if air flow Q： $60(\%)=$ Power supply frequency fs： $50(\mathrm{~Hz})$ $Q(\%)=f_{m}(H z) / f_{(}(H z)$
$60(\%)=\operatorname{tom}_{m}(\mathrm{~Hz}) / 50(\mathrm{~Hz}) \rightarrow \mathrm{f}_{\mathrm{m}}(\mathrm{Hz})=50(\mathrm{~Hz}) \times 0.6=30(\mathrm{~Hz})$
（Note 2）The air flow rate $Q(\%)$ does not show the damper＇s opening angle，but rather the air flow（\％）at the point when the opening angle is adjusted from the damper＇s fully open state．Depending on the type of damper，there may not be a proportional relation between the opening angle and the
air flow，so exercise caution．
－Pump equipment

Actual head rate A

 （Ineffective portion due to the actual head）Operation frequency Power supply frequency fRUN［Hz］
Frequency（Air flow rate Q）［Hz］（［\％］）

■Monetary amount of energy savings effect：Ms［\＄／year］
Power charge Mv
Power charge MINV
$=(\$ / y e a r)$ when a valve $\quad-\quad[\$ /$ year $]$ when an is used
inverter is used
■Power charge when a valve is used：Mv［\＄／year］
$=(P \times(1-B) \times Q+P \times B) \times \frac{1}{\eta_{M}} \times D \times H \times M$
■Power charge when an inverter is used：MINV［\＄／year］ $=\left((P-P \times A) \times\left(\frac{f_{R U N}}{f_{s}}\right)^{3}+P \times A\right) \times \frac{1}{\eta_{M}} \times \frac{1}{\eta_{\text {INV }}} \times D \times H \times M$

P：Motor capacity（kW）
A：Actual head rate（\％）
B：Valve reduction rate（\％）
Q：Flow rate（\％）
Fruv：Inverter operating frequency（ Hz ） Fs：Power supply frequency（Hz）
（Note 1）The actual head rate A $(\%)$ is determined by the pump＇s load characteristics and is a rate that the power consumption（motor capacity）is multipied by
See the following calculation formula．
Actual head rate $\mathrm{A}(\%)=\frac{\text { Actual head }(\mathrm{m})}{\text { Loss head }(\mathrm{m})}$
（Note 2）The flow rate Q（\％）value shows a volume（\％）when the flow rate is restricted by the closing of the valve． The operating frequency when an inverter is used frun（ Hz ）is proportional to the flow rate $\mathrm{Q}(\%)$ ，so decide on a frun (Hz) so that the relationship $Q(\%)=$ frun $(\mathrm{Hz}) / \mathrm{fs}(\mathrm{Hz})$ can be established．
For example，if the flow rate Q： $50(\%)$ and the power supply frequency fs is $50 \mathrm{~Hz}, \mathrm{Q}(\%)=$ frun $(\mathrm{Hz}) / \mathrm{fs}(\mathrm{Hz})$ $60(\%)=\operatorname{frun}(\mathrm{Hz}) / 50(\mathrm{~Hz}) \rightarrow$ frun $(\mathrm{Hz})=50(\mathrm{~Hz}) \times 0.6=30(\mathrm{~Hz})$
（Note 3）The flow rate $\mathrm{Q}(\%)$ does not show the valve＇s opening angle，but rather the flow rate $(\%)$ at the point when the opening angle is adjusted from the valve＇s fully open state．Depending on the type of valve，there may not be a proportional relation between the opening angle and the flow rate，so exercise caution．

Energy Savings effect of replacing damper（valve）control with inverter control

Example：The energy savings effect on an office＇s air conditioning equipment ift the operating pattern is as follows：Air flow： 85% for $2,000 \mathrm{hrs}$ ，and 60% for 2,000 hrs．Total 4,000 hrs／year．Motor output is $15 \mathrm{~kW} \times 1$ unit．
－Under damper（valve）control，the required power is as follows： $(15 \mathrm{~kW} \times 91 \% \times 2,000 \mathrm{hrs})+.(15 \mathrm{~kW} \times 76 \% \times 2,000 \mathrm{hrs})=50,.100 \mathrm{kWh}$ Air flow rate 85\％ Air flow rate 60\％
－If an inverter is used and the motor＇s rotational speed is controlled，the required power is as follows： $(15 \mathrm{~kW} \times 61 \% \times 2,000 \mathrm{hrs})+.(15 \mathrm{~kW} \times 22 \% \times 2,000 \mathrm{hrs})=24,.900 \mathrm{kWh}$ Air flow rate 85\％ Air flow rate 60\％
－The power saving effect when the power charges are $\$ 0.087 / \mathrm{kWh}$ is $25,200 \mathrm{kWh} \times \$ 0.087=\$ 2,192 /$ year
－The amount of time it takes to amorize the equipment cost it the inverter＇s cost is $\$ 2,348$ is $\$ 2,348 / \$ 2,192=1.1$ years
－Also，if we let the CO_{2} emissions coefficient be $0.12 \mathrm{~kg} / \mathrm{kWh}$（environmental staisisics from the Environmental Department of the Envionmenta Agency），the annual CO_{2} reduction amounts to

Energy savings effect

Examples of measurements with actual equipment

Exhaust fan (generating variable torque load)

- Motor capacity and inverter capacity

- Motor capacity	: 30HP
- Inverter model	: FRNO30F1S-2U
- DC REACTOR	: DCR2-22A

-Power reduction rate and energy saving effect amount

Item	Operation using commeria power	Inverter-controlled operation		
Operation frequency (Hz)	50	45	40	35
Average power use (kW)	17.2	13.1	9.10	6.23
Power reduction rate (\%)	-	$\mathbf{\Delta 3 0 . 7}$	$\mathbf{\Delta 4 7 . 1}$	$\mathbf{\Delta 6 3 . 8}$
Annual power charge (\$)	11,133	8,479	5,890	4,032
Annual amount (\$) of energy saving effect	-	2,653	5,242	7,096
Annual CO_{2} reduction volume (kg/year)	-	3,660	7,232	9,794

-Operating conditions

- Annual operating days
- Working hours per day
: 310 (days/year)
- Power charge unit price
- 0 (h7/

Cooling tower (generating variable torque load)

- Motor capacity and Inverter capacity

- Motor capacity	$: 7.5 \mathrm{HP}$
- Inverter model	: FRN007F1S-2U
- DC REACTOR	: DCR2-5.5

-Power reduction rate and energy saving effect amount

Item	Operation sing commerial poner	Inverter-controlled operation		
Operation frequency (Hz)	60	45	40	35
Average power use (kW)	5.18	2.31	1.63	1.10
Power reduction rate $(\%)$	-	$\mathbf{4 5 5 . 4}$	$\mathbf{\Delta 6 8 . 5}$	$\mathbf{\Delta 7 8 . 8}$
Annual power charge (\$)	2,703	1,205	850	574
Annual amount (\$) of energy savings effect	-	1,506	1,851	769
Annual CO_{2} reduction volume (kg/year)	-	2,066	2,556	2,938

-Operating conditions

- Annual operating days
- Working hours per day
: 300 (days/year)
- Working hours per day : 20 (hrs/day)
- Power charge unit price : $\$ 0.087 / \mathrm{kWh}$
-Mist collector (generating variable torque load)

OMotor capacity and Inverter capacity

- Motor capacity
: 5HP
- Inverter Model : FRN005F1S-2U
- DC REACTOR : DCR2-3.7
-Power reduction rate and energy saving effect amount

Item	Operation using commerial power	Inverter-controlled operation		
Operation frequency (Hz)	60	45	40	35
Average power use (kW)	3.27	1.44	0.99	0.69
Power reduction rate (\%)	-	$\mathbf{\Delta 5 6 . 0}$	$\mathbf{\Delta 6 9 . 7}$	$\mathbf{\Delta 7 8 . 9}$
Annual power charge (\$)	1,479	651	447	312
Annual amount (\$) of energy savings effect	-	827	1,029	1,166
Annual CO_{2} reduction volume (kg/year)	-	1,142	1,423	1,610

-Operating conditions

- Annual operating days
- Working hours per day : 20 (hrs/day)
- Power charge unit price : \$0.087/kWh

Conduct a search. You can study energy savings with the following types of equipment.

- Coolant pumps
- Roots blowers
- Water cooler pumps, etc.

Three-phase 208V

Item					Specifications															
Type (FRN _ _ _ F1S-2U)					001	002	003	005	007	010	015	020	025	030	040	050	060	075	100	125
Nominal applied motor [HP] *1					1	2	3	5	7.5	10	15	20	25	30	40	50	60	75	100	125
	Rated capacity [kVA] *2				1.6	2.7	3.8	6.0	9.0	11	16	21	27	31	41	51	60	76	98	123
	Rated voltage [V] *3				Three-phase, 200 V to 240 V (With AVR function)										Three-phase, 200V to 230V (With AVR function)					
	Rated current [A] *4				4.6	7.5	10.6	16.7	25	31	47	60	75	88	114	143	169	211	273	343
	Overload capability				120\% of rated current for 1 min .															
	Rated frequency				$50,60 \mathrm{~Hz}$															
	Phases, voltage, frequency	Main power supply			Three-phase, 200 to $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$										Three-phase, 200 to $220 \mathrm{~V}, 50 \mathrm{~Hz}$ Three-phase, 200 to $230 \mathrm{~V}, 60 \mathrm{~Hz}$					
		Auxiliary control power input			Single-phase, 200 to $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$										Single-phase, 200 to $230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$					
		Auxiliary fan power input			None											Single-phase, 200 to $220 \mathrm{~V}, 50 \mathrm{~Hz}$ Single-phase, 200 to $230 \mathrm{~V}, 60 \mathrm{~Hz}$				
	Voltage/frequency variations				Voltage: +10 to -15% (Voltage unbalance 2% or less) *9, Frequency: +5 to -5%															
	Rated current [A]	*6	(with DCR)		3.1	5.8	8.7	14.5	20.6	27.5	41.3	55.1	68.8	82.6	109	134	160	199	270	333
			(without DCR)		5.1	9.1	12.9	21.5	30.8	40.8	59.4	76.6	94.0	110	144	179	215	-	-	-
	Required power supply capacity [kVA] *7				1.2	2.2	3.2	5.3	7.5	10	15	20	25	30	40	49	58	72	98	120
	Torque [\%] *8				20.0									10 to 15						
	DC injection braking				Starting frequency: 0.0 to 60.0 Hz , Braking time: 0.0 to 30.0 s, Braking level: 0 to 60%															
DC reactor (DCR)					Option ${ }^{\text {a }}$ (tandard															
Applicable safety standards					UL508C, C22.2 No.14, EN50178-1997															$\left.\begin{aligned} & \text { UL508C } \\ & \text { C22.2 No. } 14 \end{aligned} \right\rvert\,$
Enclosure (IEC60529)					IP20, UL open type									IP00, UL open type						
Cooling method					Natural cooling	Fan cooling														
Mass [lbs(kg)]					$\begin{array}{r} 7.1 \\ (3.2) \\ \hline \end{array}$	$\begin{array}{r} 7.3 \\ (3.3) \\ \hline \end{array}$	$\begin{array}{r} 7.3 \\ (3.3) \\ \hline \end{array}$	$\begin{array}{r} 7.5 \\ (3.4) \\ \hline \end{array}$	$\begin{gathered} 13 \\ (5.8) \\ \hline \end{gathered}$	$\begin{gathered} 13 \\ (6.0) \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ (6.9) \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ (9.7) \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ (9.7) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 25 \\ (11.5) \\ \hline \end{array}$	$\begin{gathered} 51 \\ (23) \\ \hline \end{gathered}$	$\begin{array}{r} 73 \\ (33) \\ \hline \end{array}$	$\begin{array}{r} 75 \\ (34) \\ \hline \end{array}$	$\begin{gathered} 90 \\ (41) \\ \hline \end{gathered}$	$\begin{gathered} 90 \\ (41) \\ \hline \end{gathered}$	$\begin{gathered} 265 \\ (120) \\ \hline \end{gathered}$

*1 Standard 4-pole motor
*2 Rated capacity is calculated by assuming the output rated voltage as 208 V for three-phase 208 V .
*3 Output voltage cannot exceed the power supply voltage.
*4 An excessively low setting of the carrier frequency may result in the higher motor temperature or tripping of the inverter by its overcurrent limiter setting. Lower the continuous load or maximum load instead. (When setting the carrier frequency (F26) to 1 kHz , reduce the load to 80% of its rating.)
*5 Use [R1,T1] terminals for driving AC cooling fans of an inverter powered by the DC link bus, such as by a high power factor PWM converter. (In ordinary operation, the terminals are not used.)
*6 Calculated under Fuji-specified conditions.
*7 Obtained when a DC reactor (DCR) is used.
*8 Average braking torque (Varies with the efficiency of the motor.)
*9 Voltage unbalance (\%) $=\frac{\text { Max. voltage (V) }- \text { Min. voltage (V) }}{\text { Three-phase average voltage (V) }} \times 67$ (IEC61800-3 (5.2.3)) If this value is 2 to 3%, use an AC reactor (ACR)

Three-phase 460V
 01 to 75HP

Item					Specifications													
Type (FRN _ _ F1S-4U)					001	002	003	005	007	010	015	020	025	030	040	050	060	075
Nominal applied motor [HP] *1					1	2	3	5	7.5	10	15	20	25	30	40	50	60	75
	Rated capacity [kVA] *2				1.9	2.9	4.3	7.1	9.9	13	18	23	29	35	47	57	67	83
$\begin{array}{\|l\|l\|l} \stackrel{8}{c} \\ \end{array}$	Rated voltage [V] *3				Three-phase, 380 to 480 V (With AVR function)													
$\frac{\check{L}}{5}$	Rated current [A] *4				2.5	3.7	5.5	9.0	12.5	16.5	23	30	37	44	59	72	85	105
0	Overload capability				120% of rated current for 1 min .													
	Rated frequency				$50,60 \mathrm{~Hz}$													
	Phases, voltage, frequency	Main power supply			Three-phase, 380 to 480V, 50/60Hz											Three-phase, 380 to $440 \mathrm{~V}, 50 \mathrm{~Hz}$ Three-phase, 380 to $480 \mathrm{~V}, 60 \mathrm{~Hz}$		
		Auxiliary control power input			Single-phase, 380 to $480 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$													
		Auxiliary fan power input			None													Single-phase, 380 to $440 \mathrm{~V} / 50 \mathrm{~Hz}$, Single-phase, 380 to $480 \mathrm{~V} / 60 \mathrm{~Hz}$
	Voltage/frequency variations				Voltage: +10 to -15% (Voltage unbalance 2% or less) ${ }^{* 9}$, Frequency: +5 to -5%													
	Rated current [A]	*6	(with DCR)		1.3	2.5	3.8	6.2	8.9	11.8	17.7	23.7	29.6	35.5	46.8	57.0	68.4	85.7
			(without DCR)		2.5	4.8	6.9	10.8	14.5	19.1	27.7	36.0	43.6	50.9	64.0	78.5	93.7	118
	Required power supply capacity [kVA] *7				1.1	2.0	3.1	5.0	7.1	10	15	19	24	29	38	46	55	69
	Torque [\%] *8				20										10 to 15			
	DC injection braking				Starting frequency: 0.0 to 60.0 Hz , Braking time:0.0 to 30.0 s, Braking level: 0 to 60%													
DC reactor (DCR)					Option													
Applicable safety standards					UL508C, C22.2 No.14, EN50178-1997													
Enclosure (IEC60529)					IP20, UL open type										IP00, UL open type			
Cooling method					Natural cooling		Fan cooling											
Mass [lbs(kg)]					$\begin{gathered} 6.8 \\ (3.1) \\ \hline \end{gathered}$	$\begin{array}{r} 7.1 \\ (3.2) \\ \hline \end{array}$	$\begin{array}{r} 7.3 \\ (3.3) \\ \hline \end{array}$	$\begin{array}{r} 7.5 \\ (3.4) \\ \hline \end{array}$	$\begin{array}{r} 7.5 \\ (3.4) \\ \hline \end{array}$	$\begin{gathered} 13 \\ (6.0) \\ \hline \end{gathered}$	$\begin{array}{r} 13 \\ (6.0) \\ \hline \end{array}$	$\begin{array}{r} 15 \\ (6.9) \\ \hline \end{array}$	$\begin{gathered} 22 \\ (9.9) \\ \hline \end{gathered}$	$\begin{gathered} 22 \\ (9.9) \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ (11.5) \\ \hline \end{gathered}$	$\begin{array}{r} 51 \\ (23) \\ \hline \end{array}$	$\begin{array}{r} 53 \\ (24) \\ \hline \end{array}$	$\begin{array}{r} 73 \\ (33) \\ \hline \end{array}$

100 to 900HP

*1 Standard 4-pole motor
*2 Rated capacity is calculated by assuming the output rated voltage as 460 V for three-phase 460 V .
*3 Output voltage cannot exceed the power supply voltage.
*4 An excessively low setting of the carrier frequency may result in the higher motor temperature or tripping of the inverter by its overcurrent limiter setting. Lower the continuous load or maximum load instead. (When setting the carrier frequency (F26) to 1 kHz , reduce the load to 80% of its rating.)
*5 Use [R1,T1] terminals for driving AC cooling fans of an inverter powered by the DC link bus, such as by a high power factor PWM converter. (In ordinary operation, the terminals are not used.)
6 Calculated under Fuji-specified conditions.
*7 Obtained when a DC reactor (DCR) is used.
*8 Average braking torque (Varies with the efficiency of the motor.)
*9 Voltage unbalance (\%) $=\frac{\text { Max. voltage (V) - Min. voltage (V) }}{\text { Three-phase average voltage (V) }} \times 67$ (IEC61800-3(5.2.3)) If this value is 2 to 3%, use an AC reactor (ACR).

Item		Explanation	Remarks	$\begin{array}{\|c\|} \hline \text { Related } \\ \text { function code } \\ \hline \end{array}$
O000	PID control	Feedback value - Analog input (terminal [12],[V2]) :0 to +10V DC/0 to 100% - Analog input (terminal [C1]) : 4 to $20 \mathrm{~mA} \mathrm{DC/0} \mathrm{to} 100 \%$		E61 to E63, J01 to J06, J10 to J19
		- Accessory functions - Alarm output (absolute value alarm, deviation alarm) • Normal operation/inverse operation - Sleep function - Anti-reset wind-up function - PID output limiter - Integration reset/hold		
	Auto search for idling motor's speed	Starting at the preset frequency, the inverter automatically searches the idling motor speed to be harmonized and starts to drive it without stopping it.		
	Automatic deceleration	Upon a DC link voltage exceeding the overvoltage limit level during deceleration, the deceleration time automatically extends to avoid an $01 /$ 'trip.		H69, F08
	Deceleration characteristic	The motor loss increases during deceleration to reduce the load energy regenerating at the inverter to avoid an Oiltitip upon mode selection.		H71
	Automatic energy-saving operation	The output voltage is controlled to minimize the total sum of the motor loss and inverter loss at a constant speed.		F37,F09
	Overload protection control	The output frequency is automatically reduced to suppress the overload protection trip of the inverter caused by an increase in the ambient temperature or motor load, or by other operating conditions.		
	Auto-tuning	The motor parameters are automatically tuned.		P04
	Cooling fan ON/OFF control	Detects inverter internal temperature and stops cooling fan when the temperature is low.	An external output is issued in a transistor or relay output signal.	H06
	Pump control	An inverter controls multiple driving pumps at a time combining with driving sources of the inverter and commercial power. The inverter's integrated PID controller controls them in the flowrate, pressure and so on. The inverter controls each member of pump control sequences issuing the power source switching signal between the inverter output and commercial power. Two control modes are available. One is a fixed motor-driving mode where the inverter exclusively controls the single pump. Another is a cyclic motor-driving mode where the inverter cyclically controls a member of pumps. - Fixed motor-driving mode : Pumps under control = one inverter driven + four commercial power driven - Cyclic motor-driving mode : Pumps under control = three inverter/commercial power driven (In this mode, a relay output card option (OPC-F1S-RY) is required.) Furthermore, this control features a periodic switching function, an average time drive-switching function, a cumulative pump run time monitor, a cumulative relay activating times monitor and so on.		
	Running/stopping	- Speed monitor, output current [A], output voltage [V], torque calculation value, input power [kW],PID reference value, PID feedback value, PID output, load factor, motor output - Slect the speed monitor to be displayed from the following. Output frequency [Hz], motor speed [r/min.], load shaft speed [r/min.], \% indication		$\begin{aligned} & \text { E43 } \\ & \text { E48 } \end{aligned}$
	Lifetime early warning	Shows the lifetime early warnings of the electrolytic capacitors on the printed circuit boards, the DC link bus capacitor, and the cooling fan.	An external output can be issued in a transistor or relay output signal.	
	Cumulative run time	Shows the cumulative running hours of the motor and inverter, and the input watt-hour.		
들	Output	Transistor outputs - quantity 3 Relay outputs - quantity 1 from C and quantity 1 from A Voltage output - 0-10 Vdc Current output - 4-20 mA		
$\begin{array}{\|c\|} \hline \frac{0}{0} \\ \underline{\underline{y}} \\ \hline \end{array}$	Trip error code			
	Trip history	Saves and displays the last 4 trip codes and their detailed description.		E52

Item		Explanation		Remarks	Related function code
든 0 0 0	Overcurrent protection	The inverter is stopped upon an overcurrent caused by an overload.			
	Short-circuit protection	The inverter is stopped upon an overcurrent caused by a short-circuit in the output circuit.			
	Grounding fault protection	The inverter is stopped upon an overcurrent caused by a grounding fault in the output circuit.			
	Overvoltage protection	An excessive DC link circuit voltage is detected to stop the inverter.		3-phase 208V / 400VDC 3-phase 460V / 800VDC	
	Surge protection	The inverter is protected against surge voltages intruding across the main circuit power cable and ground.			
	Undervoltage	Stops the inverter by detecting voltage drop in DC link circuit.		3-phase 208V / 200VDC 3-phase 460V / 400VDC	F14
	Input phase loss	Stops or protects the inverter against input phase loss.		The protective function can be canceled with function code 98 .	H98
	Output phase loss	Detects breaks in inverrer output wiring at the start of running and during running, stopping the inverter output.		The protective function can be canceled with function code 98.	H98
	Overheating	The temperature of the heat sink of the inverter or that inside the inverter unit is detected to stop the inverter, upon a failure or overload of the cooling fan.			H43
	Overload	The inverer is stopped upon the temperature of the heat sink of the inverere or the temperature of the swicting element calulaled firm the output urrent.			
	.ㅡㅡ Electronic thermal	The inverter is stopped upon an electronic thermal function setting to protect the motor.		Thermal time constant can be adjusted (0.5 to 75.0 min.).	F10 to F12, P99
	\% PTC thermistor	A PTC thermistor input stops the inverter to protect the motor.			H26, H27
	(1)	Warning signal can be output based on the set level before the inverter trips.			$\begin{array}{\|l} \text { F10, F12, E34, } \\ \text { E35, P99 } \end{array}$
	Stall prevention	The outut trequency decreases upon an output curent exceeding the inimituring acceleration or constant speed operation, to avoid overcurrent tip.			H12
	Momentary power failure protection	- A protective function (inverter stoppage) is activated upon a momentary power failure for 15 msec or longer. - If restart upon momentary power failure is selected, the inverter restarts upon recovery of the voltage within the set time.			$\begin{array}{\|l\|} \hline \text { H13 to H16, } \\ \text { F14 } \\ \hline \end{array}$
	Retry function	When the motor is tripped and stopped, this function automatically resets the tripping state and restarts operation.		Waiting time before resetting and the number of retry times can be set.	H04, H05
	Command loss detection	A loss (broken wire, etc.) of the frequency command is detected to output an alarm and continue operation at the preset frequency (set at a ratio to the frequency before detection			E65
	Installation location	Shall be free from corrosive gases, flammable gases, oil mist, dusts, and direct sunlight. [Pollution degree 2 (IEC60664-1)] Indoor use only.			
	Ambient temperature	$\begin{aligned} & -10 \text { to }+50^{\circ} \mathrm{C}\left(14 \text { to } 122^{\circ} \mathrm{F}\right) \\ & \left.-10 \text { to }+40^{\circ} \mathrm{C} \text { (14 to } 104^{\circ} \mathrm{F}\right) \text { (IP54 series) } \end{aligned}$		-10 to $40^{\circ} \mathrm{C}$ (14 to $104^{\circ} \mathrm{F}$) when inverters are installed side-by-side without clearance.	
	5 to 95\% (nocondensation)	5 to 95\% (no condensation)			
	Altitude	Altitude [ft (m)] Lower than 3300 (1000) 3301 to $6600(1001$ to 2000$)$ 6601 to $9800(2001$ to 3000$)$	Output derating None Decreases Decreases ${ }^{*}$	* If the altitude exceeds $6600 \mathrm{ft}(2000 \mathrm{~m})$, insulate the interface circuit from the main power supply to conform to the Low Voltage Directives.	
	Vibration	[Smaller than $100 \mathrm{HP]} 3 \mathrm{~mm}$ (vibration width) : 2 to less than 9 Hz, $[125 \mathrm{HP}$ or more 33 mm (vibration width) : $: 2$ to less than 9 Hz $9.8 \mathrm{~m} / \mathrm{s}^{2}$ $: 9$ to less than 20 Hz 2 sz $2 \mathrm{~m} / \mathrm{s}^{2}$ $: 20$ to less than 55 Hz $1 \mathrm{~m} / \mathrm{s}^{2}$ $1 \mathrm{~m} / \mathrm{s}^{2}$ $: 55$ to less than 200 Hz $: 55$ to less than 55 Hz 			
		-25 to $+65^{\circ} \mathrm{C}$ (-13 to $\left.149^{\circ} \mathrm{F}\right)$			
		5 to 95\%RH (no condensation)			

Function	Description			LED indication	Alarm output （30A，B，C）Note）	Related function code
Overcurrent protection	Stops the inverter output to protect the inverter from an overcurrent resulting from overload．		During acceleration		\bigcirc	
Short－circuit protection	Stops the inver	tput to protect the inverter from overcurrent due to a short－circuiting in the output circuit．				
Ground fault protection	Stops the inverter output to protect the inverter from overcurrent due to a ground fault in the output circuit．This protection is effective only during startup of the inverter．If you turn ON the inverter without removing the ground fault，this protection may not work．（Applicable to inverters of 75 HP for 208V，100HP for 460 V or below（3－phase 208 V ）or 350 HP or below（3－phase 460 V ））		During deceleration During running at constant speed	Or		
	Upon detection of zero－phase current in the output power，this function stops the inverter output to protect the inverter from overcurrent due to a ground fault in the output circuit．（Applicable to inverters of 125 HP for 208 V and 125 HP for 460 V or above（3－phase 208 V ）or 450 HP or above（3－phase 460 V ））			$E F$	0	
Overvoltage protection	The inverter stops the inverter output upon detection of an overvoltage condition （400 VDC for 3－phase 208V， 800 VDC for 3－phase 460V）in the DC link bus． This protection is not assured if extremely large AC line voltage is applied inadvertently．		During acceleration During deceleration During running at constant speed（when stopped）	$\begin{aligned} & 0101 \\ & 0102 \\ & 0 \end{aligned}$	O	
Undervoltage protection	Stops the inverter output when the DC link bus voltage drops below the undervoltage level（200 VDC for 3－phase 208V， 400 VDC for 3－phase 460 V ）．However，if data＂ 3,4 ，or 5 ＂is selected for F 14 ，no alarm is output even if the DC link bus voltage drops．			i^{\prime}	Δ	F14
Input phase loss protection	Detects input phase loss，stopping the inverter output．This function prevents the inverter from undergoing heavy stress that may be caused by input phase loss or inter－phase voltage unbalance and may damage the inverter． If connected load is light or a DC reactor is connected to the inverter，this function will not detect input phase loss if any．			1 L	\bigcirc	H98
Output phase loss protection	Detects breaks in inverter output wiring at the start of running and during running，stopping the inverter output．			BPL	0	H98
Overheating protection	－Stops the inverter output upon detecting excess heat sink temperature in case of cooling fan failure or overload． －Detects a failure of the intermal air circulation DC fan and alarm－stops the inverter（For models of 50 HP or above in $208 \mathrm{~V}, 75 \mathrm{HP}$ or above in 460 V ）			BHi	\bigcirc	H43，H98
	Stops the inverter output upon detecting an excessively high ambient temperature inside the inverter caused by a failure or an overload condition of the cooling fan．			ロH3	\bigcirc	
Overload protection	Stops the inverter outputit the Insulated Gaie Bipolar Transistor（GGBT）intemal temperature calculaed fiom the output curent and temperature of inside the inverter is over the preset value．			BL ${ }^{\text {Li }}$	\bigcirc	
External alarm input	Places the inverter in alarm－stop state upon receiving digital input signal（THR）．			ロH2	\bigcirc	E01 to E05 E98，E99
Blown fuse	Upon detection of a tuse blown in the inverter＇s main circuit，this function stops the inverter output．（Applicable to 125HP or above（for both 3 －phase 208 V and 3－phase 460 V ）			$F 115$	0	
Abnormal condition in charging circuit				PロF	\bigcirc	
Electronic thermal overload	In the following cases，the inverter stops running the motor to protect the motor in accordance with the electronic thermal ove －Protects general－purpose motors over the entire frequency range（ $\mathrm{F} 10=1$ ．） －Protects inverter motors over the entire frequency range（F10＝2．） ＊The operation level and thermal time constant can be set by F11 and F12．			Bi 1	\bigcirc	F10 F11，F12
\％PTC thermistor	A PTC thermistor input stops the inverter output for motor protection．			1344	0	H26，H27
$\begin{array}{\|l\|l\|} \hline \text { O } & \begin{array}{l} \text { Overload early } \\ \text { warning } \end{array} \\ \hline \end{array}$	Outputs a preliminary alarm at a preset level before the motor is stopped by the electronic thermal overload protection for the motor．			－	－	E34，E35
Stall prevention	Operates when instantaneous overcurrent limiting is active．			－	－	H12
	－Instantaneous overcurrent limiting：Operates if the inverter＇s output current exceeds the instantaneous overcurrent limit level，avoiding tripping of the inverter（during constant speed operation or during acceleration）．					
Alarm relay output （for any fault）	－The inverter outputs a relay contact signal when the inverter issues an alarm and stops the inverter output． ＜Alarm reset＞ The alarm stop state is reset by pressing the key or by the digital input signal（RST）． ＜Saving the alarm history and detailed data＞ The information on the previous 4 alarms can be saved and displayed．			－	0	$\begin{aligned} & \text { E20,E27 } \\ & \text { E01 to E05 } \\ & \text { E98, E99 } \end{aligned}$
Memory error detection	The inverter checks memory data after power－on and when the data is written．If a memory error is detected，the inverter stops．			Er	0	
Keypad communications error detection	The inverter stops by detecting a communications error between the inverter and the keypad during operation using the keypad．			$E r 己$	\bigcirc	F02
CPU error detection	If the inverter detects a CPU error or LSI error caused by noise or some other factors，this function stops the inverter			ErJ	0	
Option communications error detection	Upon detection of an error in the communication between the inverter and an optional card，stops the inverter output．			$E-4$	－	
Option error detection	When an option card has detected an error，this function stops the inverter output．			ErS	－	
Operation error detection	STOP key priority Start check function	Pressing the key on the keypad forces the inverter to decelerate and stop the motor even if the inverter is running by any run command given via the terminals or communications link．After the motor stops，the inverter issues alarm Er．		Erb	0	H96
		The inverter prohibits any run operations and displays E_{r}－on the 7 －se if any run command is present when： －Powering up －An alarm is released（the key is turned ON or an alarm reset（RST） －＂Enable communications link（LE）＂has been activated and the run command is active	egment LED monitor T）is input．） ive in the linked source．			
Tuning error detection	During tuning of motor parameters，the tuning has failed or has aborted，or an abnormal condition has been detectied in the tuning result，the inverter stops its output．			Er 7	0	P04
RS－485 communications error detection	When the inverter is connected to a communications network via the RS－485 port designed for the keypad， detecting a communications error stops the inverter output and displays an error code -8 ．			Erg	0	
Data save error during undervoltage	If the data could not be saved during activation of the undervoltage protection function，the inverter displays the alarm code．			ErF	0	
RS－485 communications error detection	When the inverter is connected to a communications network via RS－485 communications card，detecting a communications error stops the inverter output and displays an error code r．			$E_{r} P$	0	
LSI error detection（Power PCB）	When an error occurred in the LSI on the power printed circuit board（power PCB），this function stops the inverter．（Applicable to： 208 V 50 HP or above，and 460 V 75 HP or above）			ErH	0	
Retry	When the inverter has stopped because of a trip，this function allows the inverter to automatically reset itself and restart．（You can specify the number of retries and the latency between stop and reset．）			－	－	H04，H05
Surge protection	Protects the inverter against a surge voltage which might appear between one of the power lines for the main circuit and the ground．			－	－	
Command loss detected	Upon detecting a loss of a frequency command（because of a broken wire，etc．），this function issues an alarm and continues the inverter operation at the preset reference frequency（specified as a ratio to the frequency just before the detection）．			－	－	E65
Protection against momentary power failure				－	－	
	Upon detecting a momentary power failure lasting more than 15 ms ，this function stops the inverter output． If restart after momentary power failure is selected，this function invokes a restart process when power has been restored within a predetermined period．					H13 to H16
Overload prevention control	frequency of the inverter is reduced to keep the inverter from tripping．			－	－	H70

Note ：The item indicated with Δ in the alarm output（30A，B，C）column may not be issued according to some function code settings．

External Dimensions

Inverter Outline (5HP for 208V, 7.5HP for 460V or smaller)

Power supply voltage	Type
Three-phase 208 V	FRN001F1S-2U
	FRN002F1S-2U
Three-phase 460 V	FRN003F1S-2U
	FRN005F1S-2U
	FRN001F1S-4U

Inverter Outline (7.5HP to 30HP for 208V, 10HP to 40HP for 460V)

Inverter Outline 40HP to 125HP for 208V, 50HP to 900HP for 460 V
Unit:inch (mm)

Power supply voltage	Type	Dimensions [inch (mm)]									
		W	W1	H	H1	D	D1	D2	D3	M	N
Three-phase 208V	FRN040F1S-2U	$\begin{aligned} & 12.6 \\ & (320) \\ & \hline \end{aligned}$	$\begin{aligned} & 9.45 \\ & (240) \\ & \hline \end{aligned}$	$\begin{aligned} & 21.65 \\ & (550) \\ & \hline \end{aligned}$	$\begin{array}{r} 20.87 \\ (530) \\ \hline \end{array}$	$\begin{aligned} & 10.04 \\ & (255) \\ & \hline \end{aligned}$	$\begin{aligned} & 4.53 \\ & (115) \end{aligned}$	$\begin{array}{r} 5.51 \\ (140) \\ \hline \end{array}$	$\begin{aligned} & 0.18 \\ & (4.5) \end{aligned}$	$\begin{aligned} & 2 \times \phi 0.39 \\ & (2 \times \phi 10) \end{aligned}$	$\begin{aligned} & 0.39 \\ & \text { (10) } \end{aligned}$
	FRN050F1S-2U	$\begin{aligned} & 13.98 \\ & (355) \end{aligned}$	$\begin{aligned} & 10.83 \\ & (275) \end{aligned}$	$\begin{aligned} & 24.21 \\ & (615) \end{aligned}$	$\begin{aligned} & 23.43 \\ & (595) \end{aligned}$	$\begin{aligned} & 10.63 \\ & (270) \end{aligned}$		$\begin{array}{r} 6.10 \\ (155) \end{array}$			
	FRN060F1S-2U			(615)							
	$\begin{aligned} & \text { FRN075F1S-2U } \\ & \hline \text { FRN100F1S-2U } \end{aligned}$			$\begin{aligned} & 29.13 \\ & (740) \end{aligned}$	$\begin{aligned} & 28.35 \\ & (720) \end{aligned}$						
	FRN125F1S-2U	$\begin{array}{r} 26.77 \\ (680) \\ \hline \end{array}$	$\begin{aligned} & 22.83 \\ & (580) \\ & \hline \end{aligned}$	$\begin{aligned} & 34.65 \\ & (880) \\ & \hline \end{aligned}$	$\begin{array}{r} 33.46 \\ (850) \\ \hline \end{array}$	$\begin{aligned} & 15.55 \\ & (395) \\ & \hline \end{aligned}$	$\begin{aligned} & 10.04 \\ & (255) \\ & \hline \end{aligned}$	$\begin{array}{r} 5.51 \\ (140) \\ \hline \end{array}$	$\begin{aligned} & 0.24 \\ & (6) \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \times \phi 0.59 \\ & (3 \times \phi 15) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.59 \\ & (15) \\ & \hline \end{aligned}$
Three-phase 460 V	FRN050F1S-4U	$\begin{aligned} & 12.60 \\ & (320) \\ & \hline \end{aligned}$	$\begin{aligned} & 9.45 \\ & (240) \\ & \hline \end{aligned}$	$\begin{aligned} & 21.65 \\ & (550) \end{aligned}$	$\begin{aligned} & 20.87 \\ & (530) \end{aligned}$	$\begin{aligned} & 10.04 \\ & (255) \\ & \hline \end{aligned}$	$\begin{aligned} & 4.53 \\ & (115) \end{aligned}$	$\begin{aligned} & 5.51 \\ & (140) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.18 \\ & (4.5) \end{aligned}$	$\begin{aligned} & 2 \times \phi 0.39 \\ & (2 \times \phi 10) \end{aligned}$	$\begin{aligned} & 0.39 \\ & \text { (10) } \end{aligned}$
	FRN075F1S-4U	$\begin{aligned} & 13.98 \\ & (355) \end{aligned}$	$\begin{aligned} & 10.83 \\ & (275) \end{aligned}$			$\begin{aligned} & 10.63 \\ & (270) \end{aligned}$		$\begin{array}{r} 6.10 \\ (155) \end{array}$			
	FRN100F1S-4U			$\begin{aligned} & 24.21 \\ & (615) \end{aligned}$	$\begin{aligned} & 23.43 \\ & (595) \end{aligned}$						
	$\begin{aligned} & \text { FRN125F1S-4U } \\ & \hline \text { FRN150F1S-4U } \end{aligned}$			$\begin{aligned} & 29.13 \\ & (740) \\ & \hline \end{aligned}$	$\begin{aligned} & 28.35 \\ & (720) \\ & \hline \end{aligned}$	$\begin{aligned} & 11.81 \\ & (300) \end{aligned}$	$\begin{gathered} 5.71 \\ (145) \end{gathered}$	$\begin{array}{r} 6.10 \\ (155) \end{array}$	$\begin{aligned} & 0.24 \\ & (6)^{2} \end{aligned}$	$\begin{aligned} & 2 \times \phi 0.39 \\ & (2 \times \phi 10) \end{aligned}$	$\begin{aligned} & 0.39 \\ & \text { (10) } \end{aligned}$
	FRN200F1S-4U	$\begin{aligned} & 20.87 \\ & (530) \end{aligned}$	$\begin{aligned} & 16.93 \\ & (430) \end{aligned}$	29.13	$\begin{aligned} & 27.95 \\ & (710) \end{aligned}$	$\begin{aligned} & 12.40 \\ & (315) \end{aligned}$	$\begin{aligned} & 5.31 \\ & (135) \end{aligned}$	$\begin{array}{r} 7.09 \\ (180) \\ \hline \end{array}$			
	FRN250F1S-4U					$\begin{aligned} & 14.17 \\ & (360) \end{aligned}$	$\begin{gathered} 7.09 \\ (180) \end{gathered}$	$\begin{gathered} 7.09 \\ (180) \end{gathered}$			
	FRN300F1S-4U			$\begin{array}{r} 39.37 \\ (1000) \\ \hline \end{array}$	$\begin{aligned} & 38.19 \\ & (970) \\ & \hline \end{aligned}$						
	FRN400F1S-4U	$\begin{aligned} & 26.77 \\ & (680) \end{aligned}$	$\begin{aligned} & 22.83 \\ & (580) \end{aligned}$					$\begin{gathered} 7.09 \\ (180) \end{gathered}$	$\begin{aligned} & 0.24 \\ & (6) \end{aligned}$	$\left.\begin{gathered} 3 \times \phi 0.59 \\ (3 \times \phi 15) \end{gathered} \right\rvert\,$	$\begin{aligned} & 0.59 \\ & (15) \end{aligned}$
	FRN450F1S-4U			(1000)	(970)	(380)	(200)				
	FRN500F1S-4U				$\begin{aligned} & 53.94 \\ & (1370) \end{aligned}$	$\begin{aligned} & 17.32 \\ & (440) \end{aligned}$	$\begin{aligned} & 10.24 \\ & (260) \end{aligned}$				
	FRN600F1S-4U			$\begin{aligned} & 55.12 \\ & (1400) \end{aligned}$							
	FRN700F1S-4U	$\begin{aligned} & 34.65 \\ & (880) \end{aligned}$	$\begin{aligned} & 30.71 \\ & (780) \end{aligned}$							$\begin{aligned} & 4 \times \phi 0.59 \\ & (4 \times \phi 15) \end{aligned}$	
	FRN800F1S-4U										

Multi-function keypad (TP-G1) (standard accessory)

Dimensions of panel cutting (viewed from " A ")

The following diagram is for reference only. For detailed wiring diagrams, refer to the Instruction Manual.
Keypad operation

\square Run/Stop operation and frequency setting on the keypad
 [Wiring procedure]

(1) Wire the inverter main power circuit.

[Operation method]

(1) Run/Stop : Press or key on the keypad.
(2) Setting frequency : Set the frequency with \triangle or key.
(Note 1) When connecting a DC reactor (DCR), first remove the jumper between terminals $[\mathrm{P} 1]$ and $[\mathrm{P}+]$. A DCR is optional for inverters below 75 HP for $208 \mathrm{~V}, 100 \mathrm{HP}$ for 460 V but standard for inverters of 75 HP for $208 \mathrm{~V}, 100 \mathrm{HP}$ for 460 V or above. For inverters of 75 HP for $208 \mathrm{~V}, 100 \mathrm{HP}$ for 460 V or above, be sure to connect a DCR.
(Note 2) To protect wiring, insert a molded case circuit breaker (MCCB) or a ground fault circuit interrupter (GFCI) (with overcurrent protection) of the type recommended for the inverter between the commercial power supply and the inverter. Do not use a circuit breaker with a capacity exceeding the recommended capacity.
(Note 3) In addition to an MCCB or GFCI, insert, if necessary, a magnetic contactor (MC) of the type recommended for the inverter to cut off the commercial power supply to the inverter. Furthermore, if the coil of the MC or solenoid comes into close contact with the inverter, install a surge absorber in parallel.
(Note 4) To put the inverter on standby by making the control circuit only active with the main circuit power supply being opened, connect this pair of wires to terminals [R0] and [T0]. Without connecting this pair of wires to these terminals, you can still run the inverter as long as the main wires of the commercial power supply to the main circuit are properly connected.
(Note 5) Normally no need to connect. Use these terminals when the inverter is equipped with a high power factor PWM converter with a regenerative facility.

Operation by external signal inputs

■Run/Stop operation and frequency setting through external signals

[Wiring procedure]

(1) Wire both the inverter main power circuit and control circuit.
(2) Set i (external signal) at function code $F B 2$. Next, set i (voltage input (terminal 12) $(0$ to $+10 \mathrm{VDC})$), $ᄅ$ (current input (terminal C 1$)(+4$ to 20 mADC$)$), or other value at function code $F B$ i.

[Operation method]

(1) Run/Stop

Operate the inverter across terminals FDW and CM shortcircuited, and stop with open terminals.
(2) Frequency setting: Voltage input (0 to +10 VDC), current input (+4 to 20mADC)
(Note 1) When connecting a DC reactor (DCR), first remove the jumper between terminals [P1] and [P+]. A DCR is optional for inverters below 75HP for 208V, 100HP for 460 V but standard for inverters of 75 HP for $208 \mathrm{~V}, 100 \mathrm{HP}$ for 460 V or above. For inverters of 75 HP for $208 \mathrm{~V}, 100 \mathrm{HP}$ for 460 V or above, be sure to connect a DCR.
(Note 2) To protect wiring, insert a molded case circuit breaker (MCCB) or a ground fault circuit interrupter (GFCI) (with overcurrent protection) of the type recommended for the inverter between the commercial power supply and the inverter. Do not use a circuit breaker with a capacity exceeding the recommended capacity.
(Note 3) In addition to an MCCB or GFCI, insert, if necessary, a magnetic contactor (MC) of the type recommended for the inverter to cut off the commercial power supply to the inverter. Furthermore, if the coil of the MC or solenoid comes into close contact with the inverter, install a surge absorber in parallel.
(Note 4) To put the inverter on standby by making the control circuit only active with the main circuit power supply being opened, connect this pair of wires to terminals [R0] and [T0]. Without connecting this pair of wires to these terminals, you can still run the inverter as long as the main wires of the commercial power supply to the main circuit are properly connected.
(Note 5) Normally no need to connect. Use these terminals when the inverter is equipped with a high power factor PWM converter with a regenerative facility.
(Note 6) You can select the frequency command source either electronically by supplying a DC voltage signal (within the range of 0 to $10 \mathrm{~V}, 0$ to 5 V , or 1 to 5 V) between terminals [12] and [11], or manually by connecting a frequency command potentiometer to terminals [13], [12], and [11].
(Note 7) For the wiring of the control circuit, use shielded or twisted wires. When using shielded wires, connect the shields to earth. To prevent malfunction due to noise, keep the control circuit wires as far away as possible from the main circuit wires (recommended distance: 4 inch $(10 \mathrm{~cm})$ or longer), and never put them in the same wire duct. Where a control circuit wire needs to cross a main circuit wire, route them so that they meet at right angles.

Terminal Functions

Terminal Functions

旁	Symbol	Terminal name	Functions	Remarks	Related function code
管	FMA	Analog monitor	The output style can be selected between DC voltage（ 0 to 10 V ）and DC current（ 4 to 20 mA ）． One of the following items can be output in the selected output style． －Output frequency．－Output current．－Output voltage．－Output torque．• Load factor． －Input power．• PID feedback value．•DC link circuit voltage．• Universal AO． －Motor output．• Analog output test．• PID command．• PID output	In the case of voltage output，up to two analog voltmeters （0 to 10Vdc，input impedance：10kS）can be connected． In the case of current output，analog ammeters（up to 5002）can be connected． Gain adjustment range： 0 to 200%	F29 to F31
	FMP	Pulse monitor	One of the following items can be output in a pulse frequency． －Output frequency．• Output current．－Output voltage．－Output torque．• Load factor． －Power consumption．• PID feedback value．•DC link circuit voltage．• Universal AO． －Motor output．• Analog output test．• PID command．• PID output	Up to two analog voltmeters（0 to 10 Vdc ，input impedance： $10 \mathrm{k} \Omega$ ）can be connected．（Driven at average voltage） Gain adjustment range： 0 to 200%	F33 to F35
	（PLC）	Transistor output power	－Power supply for a transistor output load．（24Vdc 50mAdc Max．）（Note：Same terminal as digital input PLC terminal）	Short circuit across terminals CM and CMY to use．	
	Y1	Transistor output 1	The following functions can be set at terminals Y 1 to Y 3 for signal output． －The setting of＂short circuit upon active signal output＂or＂open upon active signal outputt is possible． －Sink／source support（switching unnecessary）	Max．voltage：27Vdc，max．current： 50 mA ，leak current： 0.1 mA max．， ON voltage：within 2 V （at 50 mA ）	E20
	Y2	Transistor output 2			E21
	Y3	Transistor output 3			E22
	（RUN）	Inverter running（speed exists）	An active signal is issued when the inverter runs at higher than the starting frequency．		
	（RUN2）	Inverter output on	A signal is issued when the inverter runs at smaller than the starting frequency or when DC braking is in action．		
	（FAR）	Speed／freq arrival	An active signal is issued when the output frequency reaches the set frequency．	Detection width（fixed）： 2.5 （Hz）	
	（FDT）	Speed／freq．detection	An active signal is issued at output frequencies above a preset detection level． The signal is deactivated if the output frequency falls below the detection level．	Hysteresis width（fixed）： 1.0 （Hz）	E31
	（LV）	Undervoltage detection	The signal is output when the inverter stops because of undervoltage．		
	（IOL）	Inverter output limit（linit on current）	The signal is output when the inverter is limiting the current．		F43，F44
	（IPF）	Auto－restarting	The signal is output during auto restart operation（after momentary power failure and until completion of restart）．		F14
	（OL）	Overload early warning（motor）	The signal is output when the electronic thermal relay value is higher than the preset alarm level．		F10 to F12
	（RDY）	Operation ready output	A signal is issued if preparation for inverter operation is completed．		
	（SW88）	Line－to－inverter switching	The magnetic contactor on the line side of line－to－inverter switching is controlled．		
	（SW52－2）	Line－to－inverter switching	The magnetic contactor on the inverter output side（secondary side）of line－to－inverter switching is controlled．		
	（SW52－1）	Line－to－inverter switching	The magnetic contactor on the inverter input side（primary side）of line－to－inverter switching is controled．		
	（AX）	AX terminal function	The electromagnetic contactor on the inverter input side（primary side）is controlled．		
	（FAN）	Cooling fan ON／OFF control	The ON／OFF signal of the cooling fan is issued．		H06
	（TRY）	Retry in action	The signal is output during an active retry．		H04，H05
	（U－DO）	Universal DO	The signal transmitted from the host controller is issued．		
	（OH）	Heat sink overheat early warning	An early warning signal is issued before the heat sink trips due to an overheat．		
	（LIFE）	Lifetime alarm	Outputs alarm signal according to the preset lifetime level．		H42，H43，H98
	（REF OFF）	Command loss detection	A loss of the frequency command is detected．		E65
	（OLP）	Overload preventive control	The signal is output when the overload control is activated．		H70
	（ID）	Current detection	The signal is output when a current larger than the set value has been detected for the timer－set time．		E34，E35
	（PID－ALM）	PID alarm output	An absolute value alarm or deviation alarm under PID control is issued as a signal．		J11 to J13
	（PID－CTL）	Under PID control	The valid state of PID control is issued as a signal．		
	（PID－STP）	PID stop upon small water flow			J15 to J17
	（U－TL）	Low torque detection	A signal is issued if the torque falls below the preset low torque detection level for a set time．		E80，E81
	（RMT）	In remote mode	A signal is issued in the remote mode．		
	（AX2）	Operation command input	A signal is issued if there is an operation command input and operation ready is completed．		
	（ALM）	Alarm relay output（for any faut）	An alarm relay output（for any fault）signal is issued as a transistor output signal．		
	CMY	Transistor output common	Common terminal for transistor output	The terminal is isolated from terminals 11 and CM ．	
픈	Y5A，Y5C	General－purpose relay output	－Multi－purpose relay output；signals similar to above－mentioned signals Y 1 to Y 3 can be selected． －An alarm output is issued upon either excitation or no excitation according to selection．	Contact capacity： $250 \mathrm{VAC}, 0.3 \mathrm{~A}, \cos \phi=0.3$ $+48 \mathrm{VDC}, 0.5 \mathrm{~A}$	E24
烒	30A，30B，30C	Alarm relay output（for any fault）	－A no－voltage contact signal（1c）is issued when the inverter is stopped due to an alarm． －Multi－purpose relay output；signals similar to above－mentioned signals Y1 to Y3 can be selected． －An alarm output is issued upon either excitation or no excitation according to selection．		E27
	－	RJ45 connector for connection with the keypad	One of the following protocols can be selected． －Modbus RTU －Protocol exclusively for keypad（default selection） －Fuji＇s special inverter protocol －SX protocol for PC loader	Power（ +5 V ）is supplied to the keypad．	$\begin{array}{\|l} \mathrm{H} 30 \\ \text { y01 to y20 } \\ \text { y98, y99 } \end{array}$

Terminal Arrangement

- Main circuit terminals

Power supply voltage	Applicable motor rating (HP)	Inverter type	Reference
Three-phase208 V	1	FRN001F1S-2U	Fig. A
	2	FRN002F1S-2U	
	3	FRN003F1S-2U	
	5	FRN005F1S-2U	
	7	FRN007F1S-2U	Fig. B
	10	FRN010F1S-2U	
	15	FRN015F1S-2U	
	20	FRN020F1S-2U	Fig. C
	25	FRN025F1S-2U	
	30	FRN030F1S-2U	Fig. D
	40	FRN040F1S-2U	Fig. E
	50	FRN050F1S-2U	Fig. G
	60	FRN060F1S-2U	
	75	FRN075F1S-2U	
	100	FRN100F1S-2U	
	125	FRN125F1S-2U	Fig. J
Three-phase 460V	1	FRN001F1S-4U	Fig. A
	2	FRN002F1S-4U	
	3	FRN003F1S-4U	
	5	FRN005F1S-4U	
	7	FRN007F1S-4U	
	10	FRN010F1S-4U	Fig. B
	15	FRN015F1S-4U	
	20	FRN020F1S-4U	
	25	FRN025F1S-4U	Fig. C
	30	FRN030F1S-4U	
	40	FRN040F1S-4U	Fig. D
	50	FRN050F1S-4U	Fig. E
	60	FRN060F1S-4U	
	75	FRN075F1S-4U	Fig. F
	100	FRN100F1S-4U	
	125	FRN125F1S-4U	Fig. G
	150	FRN150F1S-4U	
	200	FRN200F1S-4U	Fig. H
	250	FRN250F1S-4U	Fig. 1
	300	FRN300F1S-4U	
	350	FRN350F1S-4U	
	400	FRN400F1S-4U	Fig. K
	450	FRN450F1S-4U	
	500	FRN500F1S-4U	Fig. L
	600	FRN600F1S-4U	
	700	FRN700F1S-4U	Fig. M
	800	FRN800F1S-4U	
	900	FRN900F1S-4U	

Fig. A

Fig. B

Fig. D

Fig. M

- Control circuit terminals

 (common to all models)

Screw size: M3 Tightening torque: 4.4 to $5.31 \mathrm{~b}-\mathrm{in}(0.5$ to $0.6(\mathrm{~N} \cdot \mathrm{~m})$)
Control Circuit Terminals

Screwdriver to be used (Head style)	Allowable wire size	Bared wire length	Dimension of openings in the control circuit terminals
Flat head $(0.6 \times 3.5 \mathrm{~mm})$	AWG26 to AWG16 $\left(0.14\right.$ to $\left.1.5 \mathrm{~mm}^{2}\right)$	0.28 inch $(7 \mathrm{~mm})$	$0.10(\mathrm{~W}) \times 0.11(\mathrm{H})$ inch $(2.75(\mathrm{~W}) \times 2.86(\mathrm{H}) \mathrm{mm})$

Item	Monitor, LED indicator or Key	Functions
LED/LCD Monitor	5080807	Five-digit, 7-segment LED monitor which displays the following according to the operation mode: ■In Running Mode: Running status information (e.g., output frequency, current, and voltage) - In Programming Mode: same as above - In Alarm Mode: Alarm code, which identifies the cause of alarm if the protective function is activated.
	RUN Fibm\&R日	LCD monitor which displays the following according to the operation modes: - In Running Mode: Running status information -In Programming Mode: Menus, function codes and their data - In Alarm Mode: Alarm code, which identifies the cause of alarm if the protective function is activated.
	LED indicator indexes	In running mode, display the unit of the number displayed on the LED monitor and the running status information shown on the LCD monitor. For details, see next page.
Keypad Operation Key	PRE)	Switches the operation modes of the inverter.
	(suti	Shifts the cursor to the right when entering a number.
	(Beser	Pressing this key after removing the cause of an alarm will switch the inverter to Running Mode. Used to reset a setting or screen transition.
	and	UP and DOWN keys. Used to select the setting items or change the function code data displayed on the LED monitor.
		Function/Data key. Switches the operation as follows: ■ In Running Mode: Pressing this key switches the information to be displayed concerning the status of the inverter (output frequency (Hz), output current (A), output voltage (V), etc.). - In Programming Mode: Pressing this key displays the function code and confirms the data you have entered. - In Alarm Mode: Pressing this key displays the details of the problem indicated by the alarm code that has come up on the LED monitor.
Run Operation Key	(FWD)	Starts running the motor (forward rotation).
	REV)	Starts running the motor (reverse rotation).
	STOP	Stops the motor.
	(1800	Pressing this toggle key for more than 1 second switches between Local and Remote modes.
LED Indicator		Lights while a run command is supplied to the inverter.

Type	Item	Description (information, condition, status)
Unit of Number Displayed on LED Monitor	Hz	Output frequency, frequency command
	A	Output current
	V	Output voltage
	\%	Calculated torque, load factor, speed
	r/min	Motor speed, set motor speed, load shaft speed, set load shaft speed
	m/min	Line speed, set line speed (Not applicable to FRENIC-Eco)
	kW	Input power, motor output
	X10	Data greater than 99,999
	min	Constant feeding rate time, constant feeding rate time setting (Not applicable to FRENIC-Eco)
	sec	Timer
	PID	PID process value
Operating Status	FWD	Running (forward rotation)
	REV	Running (reverse rotation)
	STOP	No output frequency
Source of Operation	REM	Remote mode
	LOC	Local mode
	COMM	Communication enabled (RS-485 (standard, optional), field bus option)
	JOG	Jogging mode (Not applicable to FRENIC-Eco)
	HAND	Keypad effective (lights also in local mode)

Function Settings

OF codes: Fundamental Functions

Code	Name	Data setting range	Increment	Unit	$\begin{array}{\|c} \text { Data }_{\text {t }} \\ \text { copyjing } \end{array}$	Default setting
F00	Data Protection	0 : Disable data protection (Function code data can be edited.) 1 : Enable data protection	-	-	Y	0
F0:	Frequency Command 1	0 : Enable \wedge^{\prime} keys on keypad 1 : Enable voltage input to terminal [12] (0 to 10 VDC) 2 : Enable current input to terminal [C1] (4 to 20 mA DC) 3 : Enable sum of voltage and current inputs to terminals [12] and [C1] 5 : Enable voltage input to terminal [V2] (0 to 10 VDC) 7 : Enable terminal command (UP) / (DOWN) control	-	-	Y	0
$F 02$	Run Command	0 : Enable / / (Motor rotational direction from digital terminals [FWD] / [REV]) 1 : Enable terminal command (FWD) or (REV) 2 : Enable / keys on keypad (forward) 3 : Enable (isy)/ keys on keypad (reverse)	-	-	Y	0
F03	Maximum Frequency	25.0 to 120.0	0.1	Hz	Y	60.0
F04	Base Frequency	25.0 to 120.0	0.1	Hz	Y	60.0
F05	Rated Voltage at Base Frequency	0 : Output a voltage in proportion to input voltage 80 to 240 V : Output a voltage AVR-controlled (for 3-phase 208 V series) 160 to 500V: Output a voltage AVR-controlled (for 3-phase 460 V series)	1	V	Y2	Refer to table below
$F 27$	Acceleration Time 1	0.00 to 3600 Note: Entering 0.00 cancels the acceleration time, requiring external soft-start.	0.01	s	Y	20.0
$F 08$	Deceleration Time 1	0.00 to 3600 Note: Entering 0.00 cancels the deceleration time, requiring external soft-start.	0.01	S	Y	20.0
F09	Torque Boost	0.0 to 20.0 (Percentage of the rated voltage at base frequency (F05)) Note: This setting is effective when $\mathrm{F} 37=0,1,3$, or 4 .	0.1	\%	Y	0.0
F in	Electronic Thermal Overload Protection for Motor (Select motorcharacteristics) (Overload detection level) (Thermal time constant)	1 : For general-purpose motors with built-in self-cooling fan 2 : For inverter-driven motors or high-speed motors with forced-ventilation fan	-	-	Y	1
Fit		0.00: Disable 1 to 135% of the rated current (allowable continuous drive current) of the motor	0.01	A	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	Refer to table below
$F i 2$		0.5 to 75.0	0.1	min	Y	Refer to table below
$F 14$	Restart Mode after Momentary Power Failure (Mode selection)	0 : Disable restart (Trip immediately) 1 : Disable restart (Trip after a recovery from power failure) 3 : Enable restart (Continue to run, for heavy inertia or general loads) 4 : Enable restart (Restart at the frequency at which the power failure occurred, for general loads) 5 : Enable restart (Restart at the starting frequency, for low-inertia load)	-	-	Y	0
F 15	Frequency Limiter $\begin{aligned} \text { (High) } \\ \text { (Low) }\end{aligned}$	0.0 to 120.0	0.1	Hz	Y	70.0
$F 15$		0.0 to 120.0	0.1	Hz	Y	0.0
F F 8	Bias (Frequency command 1)	-100.00 to 100.00 *	0.01	\%	Y	0.00
$F 20$	DC Braking(Braking start frequency) (Braking level) (Braking time)	0.0 to 60.0	0.1	Hz	Y	0.0
$F 21$		0 to 60 (Rated output current of the inverter interpreted as 100\%)	1	\%	Y	0
$F 2 \mathrm{~F}$		0.00 : Disable 0.01 to 30.00	0.01	S	Y	0.00
F23	Starting Frequency	0.1 to 60.0	0.1	Hz	Y	0.5
F25	Motor Sound (Carrier frequency) (Tone)	0.1 to 60.0	0.1	Hz	Y	0.2
F25		0.75 to $15\left(208 \mathrm{~V} \mathrm{:} 25 \mathrm{HP}\right.$ or below, $460 \mathrm{~V}: 30 \mathrm{HP}$ or below) ${ }^{* 3}$ 0.75 to $10(208 \mathrm{~V}: 30 \mathrm{HP}$ or above, $460 \mathrm{~V}: 40 \mathrm{HP}$ to 100 HP$)$ 0.75 to $6(125 \mathrm{HP}$ or above)	1	kHz	Y	2
$F 27$		0 : Level 0 (Inactive) 1 : Level 1 2 : Level 2 3 : Level 3	-	-	Y	0
F29	Analog Output [FMA] (Mode selection) (Output adjustment)	0 : Output in voltage (0 to 10 VDC) 1 : Output in current (4 to 20 mA DC)	-	-	Y	0
$F 30$		0 to 200	1	\%	Y	100
F3i	Analog Output [FMA] (Function)	Select a function to be monitored from the followings. 0 : Output frequency 2 : Output current 3 : Output voltage 4 : Output torque 5 : Load factor 6 : Input power 7 : PID feedback value (PV) 9 : DC link bus voltage 10 : Universal AO 13 : Motor output 14 : Test analog output 15 : PID process command (SV) 16 : PID process output (MV)	-	-	Y	0
F33	Reserved *4	(Pulse rate at 100\% output)	-	-	Y	1440

*1 When you make settings from the keypad, the incremental unit is restricted by the number of digits that the LED monitor can display.
(Example) If the setting range is from -200.00 to 200.00, the incremental unit is as follows:
"1" for -200 to -100, "0.1" for -99.9 to -10.0, "0.01" for -9.99 to -0.01, "0.01" for 0.00 to 99.99 , and " 0.1 " for 100.0 to 200.0
*2 Symbols used in the data copy column:
Y: Copied Y1: Not copied if the inverter capacity differs. Y2: Not copied if the voltage series differs. N: Not copied
*3 When setting the carrier frequency at 1 kHz or below, lower the maximum motor load to 80% of the rated load.
*4 F33 is displayed, but it is reserved for particular manufacturers. Unless otherwise specified, do not access this function code.
<Changing, setting, and saving data during operation>
\square : No data change allowed \square : Change with \checkmark key, and set and save with key. \square : Change and set with $)^{\circ}$ key, and save with key.

Function Settings

Function Settings
of codes: Fundamental Functions

Code	Name	Data setting range	Increment	Unit	$\left\|\begin{array}{c} \text { Data } \\ \text { copying² } \end{array}\right\|$	Default setting
F34	Terminal [FMI] (Output adjustment)	0 to 200: Voltage output adjustment	1	\%	Y	100
F35	(Function)	Select a function to be monitored from the followings. 0 : Output frequency 2 : Output current 3 : Output voltage 4 : Output torque 5 : Load factor 6 : Input power 7 : PID feedback value (PV) 9 : DC link bus voltage 10 : Universal AO 13 : Motor output 14 : Test analog output 15 : PID process command (SV) 16 : PID process output (MV)	-	-	Y	0
F37	Load Selection/ Auto Torque Boost/ Auto Energy Saving Operation	0 : Variable torque load increasing in proportion to square of speed 1 : Variable torque load increasing in proportion to square of speed (Higher startup torque required) 2 : Auto-torque boost 3 : Auto-energy saving operation(Variable torque load increasing in proportion to square of speed) 4 : Auto-energy saving operation(Variable torque load increasing in proportion to square of speed (Higher startup torque required)) Note:Apply this setting to a load with short acceleration time. 5 : Auto-energy saving operation(Auto torque boost) Note: Apply this setting to a load with long acceleration time.	-	-	Y	1
$F 43$	Current Limiter (Mode selection)	0 : Disable (No current limiter works.) 1 : Enable at constant speed (Disabled during acceleration and deceleration) 2 : Enable during acceleration and at constant speed	-	-	Y	0
$F 44$	(Level)	20 to 120 (The data is interpreted as the rated output current of the inverter for 100%.)	1	\%	Y	110

E codes: Extension Terminal Functions

Code	Name	Data setting range	Increment	Unit	$\begin{gathered} \text { Data } \\ \text { copying² } \end{gathered}$	Default setting
EO I	$\begin{array}{ll}\text { Command Assignment to: } & {[\mathrm{X} 1]} \\ & {[\mathrm{X} 2]} \\ & {[\mathrm{X} 3]} \\ & {[\mathrm{X} 4]} \\ & {[\mathrm{X} 5]}\end{array}$	Selecting function code data assigns the corresponding function to terminals [X1] to [X5] as listed below. Setting the value of 1000 s in parentheses () shown below assigns a negative logic input to a terminal.	-	-	Y	6
ED2			-	-	Y	7
E03			-	-	Y	8
E04		1 (1001) : $\}$ Select multistep frequency (1002) : 2 (SS2) (SS4)	-	-	Y	11
E05		6 (1006) : Enable 3-wire operation (HLD)	-	-	Y	35
		7 (1007) : Coast to a stop (BX)				
		8 (1008) : Reset alarm (RST)				
		9 (1009) : Enable external alarm trip (THR)				
		11 (1011) : Switch frequency command $2 / 1$ (Hz2/Hz1)				
		13: Enable DC brake (DCBRK)				
		$\begin{array}{ll}15: & \text { Switch to commercial power (} 50 \mathrm{~Hz} \text {) } \\ 16 & \text { Switch to commercial power (60 Hz) }\end{array}$				
		17 (1017) : UP (Increase output frequency) (UP)				
		18 (1018) : DOWN (Decrease output frequency) (DOWN)				
		19 (1019) : Enable write from keypad (Data changeable) (WE-KP)				
		20 (1020) : Cancel PID control (Hz/PID)				
		21 (1021) : Switch normal/inverse operation (IVS)				
		22 (1022) : Interlock (IL)				
		24 (1024) : Enable communications link via RS-485 or field bus (option) (LE)				
		25 (1025) : Universal DI				
		26 (1026) : Select starting characteristics (STM)				
		30 (1030) : Force to stop (STOP)				
		33 (1033) : Reset PID integral and differential components (PID-RST)				
		34 (1034) : Hold PID integral component (PID-HLD)				
		35 (1035) : Select local (keypad) operation (LOC)				
		38 (1038) : Enable to run 39 (Rotect motor from dew condensation (DWP)				
		40: Enable integrated sequence to switch to commercial power (50 Hz) (ISW50)				
		41: Enable integrated sequence to switch to commercial power (60 Hz) (ISW60)				
		50 (1050) : Clear periodic switching time (MCLR)				
		51 (1051) : Enable pump drive (motor 1) (MEN1)				
		52 (1052) : Enable pump drive (motor 2) (MEN2)				
		53 (1053) : Enable pump drive (motor 3) (MEN3)				
		54 (1054) : Enable pump drive (motor 4) (MEN4)				
		87 (1087) : Switch run command 2/1 (FR2/FR1)				
		88: Run forward 2 (FWD2)				
		89: Run reverse 2 ${ }^{\text {2 }}$ (REV2)				
		Note: In the case of (THR) and (STOP), data (1009) and (1030) are for normal logic, and "9" and "30" are for negative logic, respectively.				

[^0]*2 Symbols used in the data copy column:
Y: Copied
Y1: Not copied if the inverter capacity differs.
Y2: Not copied if the voltage series differs.
N : Not copied

OE codes: Extension Terminal Functions

Code	Name	Data setting range	Increment	Unit	$\begin{gathered} \text { Data } \\ \text { copying }{ }^{+2} \end{gathered}$	Default setting
E20	Signal Assignment to: (Transistor signal) $[\mathrm{Y} 1]$ $[\mathrm{Y} 2]$ (Relay contact signal) $[\mathrm{Y} 5 \mathrm{~A} / \mathrm{C}]$ $[30 \mathrm{~A} / \mathrm{B} / \mathrm{C}]$	Selecting function code data assigns the corresponding function to terminals [Y1] to [Y3], [Y5A/C], and [30A/B/C] as listed below. Setting the value of 1000s in parentheses () shown below assigns a negative logic input to a terminal.	-	-	Y	0
E2 i			-	-	Y	1
EL2			-	-	Y	2
E24			-	-	Y	15
E27			-	-	Y	99
E3i	Frequency Detection (FDT) (Detection level) (Hysteresis width)	0.0 to 120.0	0.1	Hz	Y	60.0
E32		0.0 to 120.0	0.1	Hz	Y	1.0
E34	Overload Early Warning (Level) /Current Detection (Timer)	0: (Disable) Current value of 1 to 150% of the inverter rated current	0.01	A	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	Refer to table below
E35		0.01 to 600.00*1	0.01	S	Y	10.00
E40	PID Display Coefficient A	-999 to 0.00 to 999	0.01	-	Y	100
E4 i	PID Display Coefficient B	-999 to 0.00 to 999	0.01	-	Y	0.00
643	LED Monitor (Item selection)	0: Speed monitor (Select by E48.) 3: Output current 4: Output voltage 8: Calculated torque 9: Input power 10: PID process command (Final) 12: PID feedback value 14: PID output 15: Load factor 16: Motor output 17: Analog input	-	-	Y	0
E45	$\begin{array}{r} \text { LCD Monitor } \quad \text { (Item selection) } \\ \text { (Language selection) } \end{array}$	0: Running status, rotational direction and operation guide 1: Bar charts for output frequency, current and calculated torque	-	-	Y	0
E45		0: Japanese 1: English 2: German 3: French 4: Spanish 5: Italian	-	-	Y	1
E47	(Contrast control)	0 (Low) to 10 (High)	1	-	Y	5
E48	LED Monitor (Speed monitor item)	0 : Output frequency 3: Motor speed in $\mathrm{r} / \mathrm{min}$ 4: Load shaft speed in $\mathrm{r} / \mathrm{min}$ 7: Display speed in \%	-	-	Y	0
E50	Coefficient for Speed Indication	0.01 to 200.00 *1	0.01	-	Y	30.00
E5 i	Display Coefficient for Input Watt-hour Data	0.000: (Cancel/reset) 0.001 to 99990: Function code data editing mode (Menus \#0, \#1 and \#7)1: Function code data check mode (Menus \#2 and \#7)2: Full-menu mode (Menus \#0 through \#7)	0.001	-	Y	0.010
E5?	Keypad (Menu display mode)		-	-	Y	0

Function Settings
OE codes: Extension Terminal Functions

Code	Name	Selecting function code data assigns the corresponding function to terminals [12], [C1] and [V2] as listed below. 0 : None 1 : Auxiliary frequency command 1 2 : Auxiliary frequency command 2 3 : PID process command 1 5 : PID feedback value 20 : Analog input monitor	Increment	Unit	$\begin{gathered} \text { Data } \\ \text { copying }{ }^{2} \end{gathered}$	Default setting
$E 51$ $E 52$ $E 53$	Analog Input for \quad Exxension function selection) [12] [C1] [V2]		- - -	-	Y	0 0 0
554	Saving Digital Reference Frequency	0 : Auto saving (at the time of main power turned off) 1 : Saving by pressing key	-	-	Y	0
E55	Command Loss Detection (Level)	0 : Decelerate to stop 20 to 120 999: Disable	1	\%	Y	999
E80	Detect Low Torque (Detection level)	0 to 150	1	\%	Y	20
ES !	(Timer)	0.01 to 600.00 *1	0.01	s	Y	20.00
E98	Command Assignment to:[FWD] [REV]	Selecting function code data assigns the corresponding function to terminals [FWD] and [REV] as listed below.		-	Y	98
$\varepsilon 99$		terminals [FWD] and [REV] as listed below. Setting the value of 1000s in parentheses () shown below assigns a negative logic input to a terminal.	-	-	Y	99

*1 When you make settings from the keypad, the incremental unit is restricted by the number of digits that the LED monitor can display. (Example) If the setting range is from -200.00 to 200.00, the incremental unit is as follows:
"1" for -200 to $-100, ~ " 0.1$ " for -99.9 to $-10.0, ~ " 0.01 "$ for -9.99 to -0.01 , " 0.01 " for 0.00 to 99.99 , and " 0.1 " for 100.0 to 200.0
*2 Symbols used in the data copy column:
Y: Copied
Y1: Not copied if the inverter capacity differs.
Y2: Not copied if the voltage series differs.
N : Not copied
<Changing, setting, and saving data during operation>
\square : No data change allowed \square : Change with

OC codes: Control Functions of Frequency

Code	Name	Data setting range	Increment	Unit	$\begin{gathered} \text { Data } \\ \text { copying² } \end{gathered}$	Default setting
EDi	$\begin{array}{rr}\text { Jump Frequency } 1 & \\ 2 & \\ 3 & \\ & \\ & \text { (Band) }\end{array}$	0.0 to 120.0	0.1	Hz	Y	0.0
[02					Y	0.0
[03					Y	0.0
C04		0.0 to 30.0	0.1	Hz	Y	3.0
505	Multistep Frequency	0.00 to 120.00*1	0.01	Hz	Y	0.00
[05					Y	0.00
507					Y	0.00
[08					Y	0.00
509					Y	0.00
510					Y	0.00
[1i					Y	0.00
$[30$	Frequency Command 2	0 : Enable $\wedge^{\prime} \vee$ keys on keypad 1 : Enable voltage input to terminal [12] (0 to 10 VDC) 2 : Enable current input to terminal [C1] (4 to 20 mA DC) 3 : Enable sum of voltage and current inputs to terminals [12] and [C1] 5 : Enable voltage input to terminal [V2] (0 to 10 VDC) 7 : Enable terminal command (UP) / (DOWN) control	-	-	Y	
[32	Analog Input Adjustment tor [12] (Gain)	0.00 to 200.00 *1	0.01	\%	Y	100.0
$[33$	(Filter time constant)	0.00 to 5.00	0.01	s	Y	0.05
$[34$	(Gain reference point)	0.00 to 100.00 *1	0.01	\%	Y	100.0
[3]	Analog Input Adjustment tor [C1] (Gain)	0.00 to $200.00 * 1$	0.01	\%	Y	100.0
$[38$	(Filter time constant)	0.00 to 5.00	0.01	s	Y	0.05
$[39$	(Gain reference point)	0.00 to 100.00 *	0.01	\%	Y	100.0
[4]	Analog Input Adjustment tor [V2] (Gain)	0.00 to 200.00 *1	0.01	\%	Y	100.0
$[4]$	(Filter time constant)	0.00 to 5.00	0.01	s	Y	0.05
[44	(Gain reference point)	0.00 to 100.00 * 1	0.01	\%	Y	100.0
[50	Bias Reference Point (Frequency command 1)	0.00 to 100.0*1	0.01	\%	Y	0.00
[5:	Bias for PID command 1 (Bias value)	-100.0 to 100.00* ${ }^{\text {* }}$	0.01	\%	Y	0.00
[52	(Bias reference point)	0.00 to 100.00 * 1	0.01	\%	Y	0.00
$[53$	Selection of Normal/ Inverse Operation (Frequency command 1)	0 : Normal operation 1 : Inverse operation	-	-	Y	0

P codes: Motor Parameters

Code	Name	Data setting range	Increment	Unit	$\left\lvert\, \begin{gathered} \text { Data } \\ \text { copying } \end{gathered}\right.$	Default setting
PO	(No. of poles) (Rated capacity)	2 to 22	2	Pole	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \\ & \hline \end{aligned}$	4
POZ		0.01 to 1000 (where, the data of function code P99 is 0,3 , or 4.) 0.01 to 1000 (where, the data of function code P99 is 1.)	$\begin{aligned} & 0.01 \\ & 0.01 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { kW } \\ & \mathrm{HP} \end{aligned}$	$\begin{aligned} & \mathrm{Y} 1 \end{aligned}$	Refer to table below
P03	(Rated current) (Auto-tuning)	0.00 to 2000	0.01	A	Y1Y2	Refer to table below
P04		0 : Disable 1 : Enable (Tune \%R1 and \%X while the motor is stopped.) 2 : Enable (Tune \%R1 and \%X while the motor is stopped, and no-load current while running.)	-	-	N	0
P05	(No-load current)	0.00 to 2000	0.01	A	Y1Y2	Refer to table below
PO7	(\%R1)	0.00 to 50.00	0.01	\%	Y1Y2	Refer to table below
P08	(\%X)	0.00 to 50.00	0.01	\%	Y1Y2	Refer to table below
999	Motor Selection	0 : Characteristics of motor 0 (Fuji standard motors, 8-series) 1 : Characteristics of motor 1 (HP-rated motors) 3 : Characteristics of motor 3 (Fuji standard motors, 6-series) 4 : Other motors	-	-	Y1Y2	1

OH codes: High Performance Functions

Code	Name	Data setting range	Increment	Unit	Data copying	Default setting
H03	Data Initialization	0 : Disable initialization 1 : Initialize all function code data to the factory defaults 2 : Initialize motor parameters	-	-	N	0
404	Auto-resetting (Times)	$\begin{array}{\|l\|} \hline 0 \text { : Disable } \\ 1 \text { to } 10 \\ \hline \end{array}$	1	Times	Y	0
H05	(Reset interval)	0.5 to 20.0	0.1	s	Y	5.0
H05	Cooling Fan ON/OFF Control	0 : Disable (Always in operation) 1 : Enable (ON/OFF controllable)	-	-	Y	0
H07	Acceleration/Deceleration Pattern	0 : Linear 1 : S-curve (Weak) 2 : S-curve (Strong) 3 : Curvilinear	-	-	Y	0
409	Select Starting Characteristics (Auto search for idling motor speed)	0 : Disable 3 : Enable (Follow Run command, either forward or reverse.) 4 : Enable (Follow Run command, both forward and reverse.) 5 : Enable (Follow Run command, inversely both forward and reverse.)	-	-	Y	0
Hi'	Deceleration Mode	0 : Normal deceleration 1 : Coast-to-stop	-	-	Y	0
Hi?	Instantaneous Overcurrent Limiting	0 : Disable 1 : Enable	-	-	Y	1

Function Settings

Function Settings

OH codes: High Performance Functions

OJ codes：Application Functions

Code	Name	Data setting range	Incre－ ment	Unit	$\begin{gathered} \text { Data } \\ \text { copying } \end{gathered}$	Default setting
U＇1	PID Control（Mode selection）	0 ：Disable 1 ：Enable（normal operation） 2 ：Enable（inverse operation）	－	－	Y	0
402	（Remote process command）	0 ：Enable $1 \geqslant$ keys on keypad 1 ：PID process command 1 3 ：Enable terminal command（UP）／（DOWN）control 4：Command via communications link	－	－	Y	0
U03	P（Gain）	0.000 to 30.000 ＊1	0.001	Times	Y	0.100
404	1 （Integral time）	0.0 to 3600.0 ＊	0.1	s	Y	0.0
U05	D（Differential time）	0.00 to 600.00 ＊1	0.01	s	Y	0.00
405	（Feedback filter）	0.0 to 900.0	0.1	S	Y	0.5
410	（Anti reset windup）	0 to 200	1	\％	Y	200
Lit	（Select alarm output）	0 ：Absolute－value alarm 1 ：Absolute－value alarm（with Hold） 2 ：Absolute－value alarm（with Latch） 3 ：Absolute－value alarm（with Hold and Latch） 4 ：Deviation alarm 5 ：Deviation alarm（with Hold） 6 ：Deviation alarm（with Latch） 7 ：Deviation alarm（with Hold and Latch）	－	－	Y	0
412	（Upper limit alarm（AH））	0 to 100	1	\％	Y	100
413	（Lower limit alarm（AL））	0 to 100	1	\％	Y	0
4.15	（Stop frequency for slow flowrate）	0 ：Disable 1 to 120	1	Hz	Y	0
Lis	（Slow flowrate level stop latency）	1 to 60	1	S	Y	30
417	（Starting frequency）	0 ：Disable 1 to 120	1	Hz	Y	0
Li8	（Upper limit of PID process output）	1 to 120 999：Depends on setting of F15	1	Hz	Y	999
4 L	（Lower limit of PID process output）	1 to 120 999：Depends on setting of F16	1	Hz	Y	999
uc ！	Dew Condensation Prevention（Duty）	1 to 50	1	\％	Y	1
山己己	Commercial Power Switching Sequence	0 ：Keep inverter operation（Stop due to alarm） 1 ：Automatically switch to commercial－power operation	－	－	Y	0
U25	Pump Control （Mode selection）	0 ：Disable 1 ：Enable（Fixed，inverter－driven） 2 ：Enable（Floating，inverter－driven）	－	－	Y	0
U25	Motor 1 Mode	0 ：Disable（Always OFF） 1 ：Enable 2 ：Force to run by commercial power	－	－	Y	0
L2？ 7	Motor 2 Mode		－	－	Y	0
ULD	Motor 3 Mode		－	－	Y	0
L29	Motor 4 Mode		－	－	Y	0
430	Motor Switching Order	0 ：Fixed 1 ：Automatically（Constant run time）	－	－	Y	0
431	Motor Stop Mode	0 ：Stop all motors（inverter－and commercial power－driven） 1 ：Stop inverter－driven motor only（excl．alarm state） 2 ：Stop inverter－driven motor only（incl．alarm state）	－	－	Y	0
432	Periodic Switching Time for Motor Drive	0.0 ：Disable switching 0.1 to 720．0：Switching time range 999 ：Fix to 3 minutes	0.1	h	Y	0.0
433	Periodic Switching Signaling Period	0.00 to 600.00	0.01	S	Y	0.10
434	Mount of Commercial Power－driven Motor（Frequency）	0 to 120 999：Depends on setting of J18 （This code is used to judge whether or not to mount a commercial power－driven motor by checking the output frequency of the inverter－driven motor．）	1	Hz	Y	999
435	（Duration）	0.00 to 3600	Variable	s	Y	0.00
436	Unmount of Commercial Power－driven Motor（Frequency）	0 to 120999 ：Depends on setting of J19 （This code is used to judge whether or not to unmount a commercial power－driven motor by checking the output frequency of the inverter－driven motor．）	1	Hz	Y	999
437	（Duration）	0.00 to 3600	Variable	S	Y	0.00
438	Contactor Delay Time	0.01 to 2.00	0.01	S	Y	0.10
439	Switching Time for Motor Mount （Decl．time）	0.00 ：Depends on the setting of F08， 0.01 to 3600	Variable	S	Y	0.00
440	Switching Time for Motor Unmount （Accl．time）	0.00 ：Depends on the setting of F07， 0.01 to 3600	Variable	S	Y	0.00
4 4	Motor Mount／Unmount Switching Level	0 to 100	1	\％	Y	0
442	Switching Motor Mount／ Unmount （Dead band）	$\begin{aligned} & \hline 0.0 \text { : Disable } \\ & 0.1 \text { to } 50.0 \\ & \hline \end{aligned}$	0.1	\％	Y	0.0

＊1 When you make settings from the keypad，the incremental unit is restricted by the number of digits that the LED monitor can display．
（Example）If the setting range is from -200.00 to 200.00 ，the incremental unit is as follows：
＂1＂for -200 to $-100, ~ " 0.1 "$ for -99.9 to－10．0，＂ 0.01 ＂for -9.99 to $-0.01, ~ " 0.01 "$ for 0.00 to 99.99 ，and＂ $0.1 "$ for 100.0 to 200.0
＊2 Symbols used in the data copy column：
Y：Copied
Y1：Not copied if the inverter capacity differs．
Y2：Not copied if the voltage series differs．
N ：Not copied
＊5 H86，H87，H88 and H90 are displayed，but they are reserved for particular manufacturers．Unless otherwise specified，do not access these function codes．
＜Changing，setting，and saving data during operation＞
\square ：No data change allowed \square ：Change with \triangle key，and set and save with key．\square ：Change and set with \triangle key，and save with ${ }^{2}$ key．

J codes: Application Functions

Code	Name	Data setting range	Increment	Unit	$\begin{array}{\|c\|} \hline \text { Data } \\ \text { copying } \end{array}$	Default setting
443	PID Control Startup Frequency	0: Disable 1 to 120 999: Depends on the setting of J36	1	Hz	Y	999
445	Signal Assignment to: (For relay output card) [Y1A/B/C] [Y2A/B/C] [Y3A/B/C]	Selecting function code data assigns the corresponding function toterminals [Y1A/B/C], [Y2A/B/C], and [Y3A/B/C].100 : Depends on the setting of E20 to E2260 (1060) : Mount motor 1, inverter-driven	-	-	Y	100
445			-	-	Y	100
447		61 (1061) : Mount motor 1, commercial-power-driven (M1_L) 62 (1062) : Mount motor 2, inverter-driven (M2_I) 63 (1063) : Mount motor 2, commercial-power-driven (M2_L) 64 (1064) : Mount motor 3, inverter-driven (M3_I) 65 (1065) : Mount motor 3, commercial-power-driven (M3_L) 67 (1067) : Mount motor 4, commercial-power-driven (M4_L) 68 (1068) : Periodic switching early warning (MCHG) 69 (1069) : Pump control limit signal (MLIM)	-	-	Y	100
448	Cumulative Run Time of Motor(Motor 0)(Motor 1)(Motor 2)(Motor 3)(Motor 4)	Indication of cumulative run time of motor for replacement	1	h	Y	-
449			1	h	Y	-
450			1	h	Y	-
451			1	h	Y	-
452			1	h	Y	-
453	Maximum Cumulative Number of Relay ON Times $[\mathrm{Y} 1 \mathrm{~A} / \mathrm{B} / \mathrm{C}]$ to $[\mathrm{Y} 3 \mathrm{~A} / \mathrm{B} / \mathrm{C}]$ $[\mathrm{Y} 1],[\mathrm{Y} 2],[\mathrm{Y} 3]$ [Y5A], [30A/B/C]	Indication of the maximum number of ON times of relay contacts on the relay output card or those built in inverter Display of 1.000 means 1000 times. For relay output card For built-in mechanical contacts	1	Times	Y	-
454			,	Times	Y	-
$\underline{45}$			1	Times	Y	-

y codes: Link Functions

Code	Name	Data setting range	Increment	Unit	$\begin{gathered} \text { Data } \\ \text { copying } \end{gathered}$	Default setting
301	RS-485 Communication(Standard) (Station address)	1 to 255	1	-	Y	1
402	(Communications error processing)	0 : Immediately trip and alarm $E-g$ 1 : Trip and alarm $E_{r} B$ after running for the period specified by timer y03 2 : Retry during the period specified by timer y03. If retry fails, trip and alarm $E_{r}-8$. If it succeeds, continue to run. 3 : Continue to run	-	-	Y	0
303	(Error processing timer) (Transmission speed)	0.0 to 60.0	0.1	S	Y	2.0
304		$0: 2400 \mathrm{bps}$ 1 : 4800 bps 2 : 9600 bps 3 : 19200 bps 4:38400 bps	-	-	Y	3
305	(Data length) (Parity check)	$\begin{aligned} & 0: 8 \text { bits } \\ & 1: 7 \text { bits } \\ & \hline \end{aligned}$	-	-	Y	0
305		0 : None 1 : Even parity 2 : Odd parity	-	-	Y	0
407	(Stop bits)(No-response error detection time)	$\begin{array}{\|l\|} \hline 0: 2 \text { bits } \\ 1: 1 \text { bit } \\ \hline \end{array}$	-	-	Y	0
408		0 (No detection), 1 to 60	1	s	Y	0
409	(Response latency time)	0.00 to 1.00	0.01	s	Y	0.01
410	(Protocol selection)	0 : Modbus RTU protocol 1 : FRENIC Loader protocol (SX protocol) 3 : Metasys-N2 4 : FLN P1	-	-	Y	1

*2 Symbols used in the data copy column:
Y: Copied
Y1: Not copied if the inverter capacity differs.
Y2: Not copied if the voltage series differs.
N : Not copied
<Changing, setting, and saving data during operation>

Oy codes: Link Functions

Code	Name	Data setting range			Increment	Unit	$\begin{gathered} \text { Data } \\ \text { copying² } \end{gathered}$	Default setting
311	RS-485 Communication (Optioon) (Station address)	1 to 255			1	-	Y	1
312	(Communications error processing) (Error processing timer) (Transmission speed)	0 : Immediately trip and alarm $E_{r} P$ 1 : Trip and alarm $E_{r}-P$ after running for the period specified by timer y13. 2 : Retry during the period specified by timer y13. If retry fails, trip and alarm $E_{r} P$. If it succeeds, continue to run. 3 : Continue to run.			-	-	Y	0
313			o 60.0		0.1	s	Y	2.0
414			400 bps 800 bps 600 bps 9200 bps 8400 bps		-	-	Y	3
415	(Data length) (Parity check)				-	-	Y	0
315			None ven parity Odd parity		-	-	Y	0
317	(Stop bits)				-	-	Y	0
318	(No-response error detection time) (Response latency time) (Protocol selection)		No detection), 60		1	s	Y	0
419			to 1.00		0.01	s	Y	0.01
420		0 : Modbus RTU protocol 3 : Metasys-N2 4: FLN P1			-	-	Y	0
498	Bus Link Function (Mode selection)		Frequency command	Run command	-	-	Y	0
		0:	Follow H3O data	Follow H30 data				
		1:	Via field bus option	Follow H30 data				
		2:	Follow H30 data	Via field bus option				
		3:	Via field bus option	Via field bus option				
399	Loader Link Function (Mode selection)		Frequency command	Run command	-	-	N	0
		0:	Follow H30 and y98 data	Follow H30 and y98 data				
		1:	Via RS-485 link (Loader)	Follow H30 and y98 data				
		2:	Follow H30 and y98 data	Via RS-485 link (Loader)				
		3:	Via RS-485 link (Loader)	Via RS-485 link (Loader)				

1208V Default setting

Inverter type	F05	F11	F12	E34	P02	P03	P06	P07	P08	H13	H80	H86
FRN001F1S-2U	208	3.16	5.0	3.16	1.00	3.16	1.39	4.61	10.32	0.5	0.20	0
FRN002F1S-2U	208	6.16	5.0	6.16	2.00	6.16	2.53	5.04	9.09	0.5	0.20	0
FRN003F1S-2U	208	8.44	5.0	8.44	3.00	8.44	3.23	3.72	24.58	0.5	0.20	0
FRN005F1S-2U	208	13.60	5.0	13.60	5.00	13.60	4.32	3.99	28.13	0.5	0.20	0
FRN007F1S-2U	208	20.19	5.0	20.19	7.50	20.19	5.63	3.18	34.70	0.5	0.20	0
FRN010F1S-2U	208	27.42	5.0	27.42	10.00	27.42	7.91	2.91	36.89	0.5	0.20	0
FRN015F1S-2U	208	40.44	5.0	40.44	15.00	40.44	11.49	2.48	34.92	1.0	0.20	0
FRN020F1S-2U	208	53.98	5.0	53.98	20.00	53.98	8.32	2.54	35.90	1.0	0.20	0
FRN025F1S-2U	208	65.49	5.0	65.49	25.00	65.49	15.10	2.11	38.01	1.0	0.20	0
FRN030F1S-2U	208	79.06	5.0	79.06	30.00	79.06	17.91	2.29	39.31	1.0	0.20	0
FRN040F1S-2U	208	100.20	10.00	100.20	40.00	100.20	12.30	2.22	30.83	1.0	0.20	0
FRN050F1S-2U	208	126.60	10.00	126.60	50.00	126.60	16.91	2.34	30.27	1.0	0.10	2
FRN060F1S-2U	208	150.80	10.00	150.80	60.00	150.80	18.81	1.57	32.85	1.5	0.10	2
FRN075F1S-2U	208	191.50	10.00	191.50	75.00	191.50	25.86	1.67	32.97	1.5	0.10	2
FRN100F1S-2U	208	248.80	10.00	248.80	100.00	248.80	33.82	1.31	28.97	1.5	0.10	2
FRN125F1S-2U	208	295.60	10.00	295.60	125.00	295.60	26.95	1.28	27.93	1.5	0.10	2

460V Default setting

Inverter type	F05	F11	F12	E34	P02	P03	P06	P07	P08	H13	H80	H86
FRN001F1S-4U	460	1.50	5.0	1.50	1.00	1.50	0.77	3.96	8.86	0.5	0.20	0
FRN002F1S-4U	460	2.90	5.0	2.90	2.00	2.90	1.40	4.29	7.74	0.5	0.20	0
FRN003F1S-4U	460	4.00	5.0	4.00	3.00	4.00	1.79	3.15	20.81	0.5	0.20	0
FRN005F1S-4U	460	6.30	5.0	6.30	5.00	6.30	2.39	3.34	23.57	0.5	0.20	0
FRN007F1S-4U	460	9.30	5.0	9.30	7.50	9.30	3.12	2.65	28.91	0.5	0.20	0
FRN010F1S-4U	460	12.70	5.0	12.70	10.00	12.70	4.37	2.43	30.78	0.5	0.20	0
FRN015F1S-4U	460	18.70	5.0	18.70	15.00	18.70	6.36	2.07	29.13	1.0	0.20	0
FRN020F1S-4U	460	24.60	5.0	24.60	20.00	24.60	4.60	2.09	29.53	1.0	0.20	0
FRN025F1S-4U	460	30.00	5.0	30.00	25.00	30.00	8.33	1.75	31.49	1.0	0.20	0
FRN030F1S-4U	460	36.20	5.0	36.20	30.00	36.20	9.88	1.90	32.55	1.0	0.20	0
FRN040F1S-4U	460	45.50	5.0	45.50	40.00	45.50	6.80	1.82	25.32	1.0	0.20	0
FRN050F1S-4U	460	57.50	10.00	57.50	50.00	57.50	9.33	1.92	24.87	1.0	0.20	0
FRN060F1S-4U	460	68.70	10.00	68.70	60.00	68.70	10.40	1.29	26.99	1.5	0.20	0
FRN075F1S-4U	460	86.90	10.00	86.90	75.00	86.90	14.30	1.37	27.09	1.5	0.10	2
FRN100F1S-4U	460	113.00	10.00	113.00	100.00	113.00	18.70	1.08	23.80	1.5	0.10	2
FRN125F1S-4U	460	134.00	10.00	134.00	125.00	134.00	14.90	1.05	22.90	1.5	0.10	2
FRN150F1S-4U	460	169.00	10.00	169.00	150.00	169.00	45.20	0.96	21.61	1.5	0.10	2
FRN200F1S-4U	460	231.00	10.00	231.00	200.00	231.00	81.80	0.72	20.84	2.0	0.10	2
FRN250F1S-4U	460	272.00	10.00	272.00	250.00	272.00	41.10	0.71	18.72	2.5	0.10	2
FRN300F1S-4U	460	323.00	10.00	323.00	300.00	323.00	45.10	0.53	18.44	2.5	0.10	2
FRN350F1S-4U	460	375.00	10.00	375.00	350.00	375.00	68.30	0.99	19.24	2.5	0.10	2
FRN400F1S-4U	460	429.00	10.00	429.00	400.00	429.00	80.70	1.11	18.92	4.0	0.10	2
FRN450F1S-4U	460	481.00	10.00	481.00	450.00	481.00	85.50	0.95	19.01	4.0	0.10	2
FRN500F1S-4U	460	534.00	10.00	534.00	500.00	534.00	99.20	1.05	18.39	5.0	0.10	2
FRN600F1S-4U	460	638.00	10.00	638.00	600.00	638.00	140.00	0.85	18.38	5.0	0.10	2
FRN700F1S-4U	460	638.00	10.00	638.00	700.00	638.00	140.00	0.85	18.38	5.0	0.10	2
FRN800F1S-4U	460	638.00	10.00	638.00	800.00	638.00	140.00	0.85	18.38	5.0	0.10	2
FRN900F1S-4U	460	638.00	10.00	638.00	900.00	638.00	140.00	0.85	18.38	5.0	0.10	2

Remote keypad (Standard equipment) Use an extension cable to perform remote operation. Multi-function keypad
TP-G1
This multi-function keypad has a large 5-digit 7segment LED with backlit LCD.

Inverter loader software for Windows This software is used to set function codes in the inverter from a personal computer, to manage data, etc. USB-RS-485 converter, USB cable [Handled by System Sacom Sales Corp.].

Arrestor

CN232■ดप
Used to absorb lightning surges that come in from the power supply to protect all the equipment that is connected to the power supply.
[Handled by Fuji Electric Technica Co., Ltd.]

Radio noise reducing zero phase reactor ACL-40B, ACL-74B, F200160 This is used to reduce noise. For the most part, control effects can be obtained in frequency band of 1 MHz or higher. Since the frequency band where effects can be obtained is broad, it is effective as a simple countermeasure against noise. If the wiring distance between a motor and the inverter is short ($66 \mathrm{ft}(20 \mathrm{~m}$) is a good guideline), it is recommended that it be connected to the power supply side, and if the distance exceeds $66 \mathrm{ft}(20 \mathrm{~m})$, connect it to the output side.

EMC compliant filter

EFL- $\square \square \square$
This is an exclusive filter used to comply with European regulations in the EMC Directives (emissions). For details, make connections in accordance with the "Installation Manual."

Power filter

RNF $\square \square \square \square-\square \square$
This filter can be used for the same purpose as the "EMC compliant filter" described above, but it does not comply with the EMC Directives.

Output circuit filter

OFL- $\square \square \square-\square$
This filter is connected to the output circuits of low noise type inverters (carrier frequency 8 kHz to $15 \mathrm{kHz}, 6 \mathrm{kHz}$ or greater in 40HP or higher inverter) and is used for the following purposes. - Suppresses fluctuation of motor terminal voltages. Prevents damage to motor insulation due to surge Prevents damage to motor insula
voltage in 460 V series inverters.
voltage in 460 V series inverters.
Suppresses leak current in output side wiring. Reduces leak current when multiple motors are run side by side or when there is long distance wiring. - Suppresses radiation noise and induction noise from output side wiring.
If the wiring length in a plant, etc. is long, it is effective as a countermeasure for noise reduction. When this filter is connected, be sure to set the carrier frequency (F26) at 8 kHz or higher (6 kHz or higher for 40 HP or larger model).
OFL-■ด-4A
This filter is connected to the inverter output circuit for the following purposes.

- Suppresses fluctuation of motor terminal voltages. Prevents damage to motor insulation due to surge voltage in 460 V series inverters
- Suppresses radiation noise and induction noise from output side wiring.
If the wiring length in a plant, etc. is long, it is effective as a noise reduction countermeasure. This filter is not limited by carrier frequency. Also, motor tuning can be carried out with this option in the installed state.

Surge suppression unit

SSU- $\square \square \square-\square T A-N S$
Prevents the motor insulation from being damaged by the surge current of the inverter.

Surge absorber

S2-A-O: For magnetic contactors
S1-B-O: For mini control relays, timers
Absorbs external surges and noise and prevents malfunction of magnetic contactors, mini control relays and timers, etc.
[Handled by Fuji Electric Technica Co., Ltd.]

Surge killer

FLS-323
Absorbs external surges and noise, preventing malfunction of electronic devices used in control panels, etc.

Analog frequency meter (1.77, 236inch square (45,60mm square) TRM4.45, TV.60 [Handled by Fuij Denki Technica Co., Ltd.]
Frequency setting VR
RJ-13, WAR3W-1k Ω
[Handled by Fuji Denki Technica Co., Ltd.] [Handled by Fuji Denki Technica Co., Ltd.]

DC REACTOR

Fig. E

Fig. F

Unit:inch (mm)

Power supply voltage	Applicable motor rating (HP)	Inverter type	REACTOR type	Fig.	Dimensions [inch (mm)]									Mass [lbs(kg)]
					W	W1	D	D1	D2	D3	H	Mounting hole	Terminal hole	
3-phase 208V	1	FRN001F1S-2U	DCR2-1.5	A	2.6(66)	2.20(56)	3.54(90)	2.83(72)	0.79(20)	-	3.70(94)	0.2x0.31(5.2x8)	M4	3.5(1.6)
	2	FRN002F1S-2U	DCR2-2.2	A	3.39(86)	2.80(71)	3.94(100)	3.15(80)	0.39(10)	-	4.33(110)	$0.24 \times 0.43(6 \times 11)$	M4	4.0(1.8)
	3	FRN003F1S-2U												
	5	FRN005F1S-2U	DCR2-3.7	A	3.39(86)	2.80(71)	3.94(100)	3.15(80)	0.79(20)	-	4.33(110)	$0.24 \times 0.43(6 \times 11)$	M4	5.7(2.6)
	7	FRN007F1S-2U	DCR2-7.5	A	4.37(111)	3.74(95)	3.94(100)	3.15(80)	0.91(23)	-	5.12(130)	$0.28 \times 0.43(7 \times 11)$	M5	8.4(3.8)
	10	FRN010F1S-2U	DCR2-11	A	4.37(111)	3.74(95)	3.94(100)	3.15(80)	0.94(24)	-	5.39(137)	$0.28 \times 0.43(7 \times 11)$	M6	9.5(4.3)
	15	FRN015F1S-2U	DCR2-15	A	5.75(146)	4.88(124)	4.72(120)	3.78(96)	0.59(15)	-	7.09(180)	$0.28 \times 0.43(7 \times 11)$	M6	13(5.9)
	20	FRN020F1S-2U	DCR2-18.5	A	5.75(146)	4.88(124)	4.72(120)	3.78(96)	0.98(25)	-	7.09(180)	$0.28 \times 0.43(7 \times 11)$	M8	16(7.4)
	25	FRN025F1S-2U	DCR2-24U	A	5.75(146)	4.88(124)	4.72(120)	3.78(96)	0.98(25)	-	7.09(180)	$0.28 \times 0.43(7 \times 11)$	M8	17(7.5)
	30	FRN030F1S-2U	DCR2-30B	B	5.98(152)	3.54(90)	6.14(156)	4.57(116)	4.53(115)	3.07(78)	5.12(130)	0.31 (8)	M8	26(12)
	40	FRN040F1S-2U	DCR2-37B	B	6.73(171)	4.33(110)	5.94(151)	4.33(110)	4.53(115)	2.95(75)	5.91(150)	0.31(8)	M8	31(14)
	50	FRN050F1S-2U	DCR2-45B	B	6.73 (171)	4.33(110)	6.54(166)	4.92(125)	4.72(120)	3.39(86)	5.91(150)	0.31 (8)	M10	35(16)
	60	FRN060F1S-2U	DCR2-55B	C	7.48(190)	6.30(160)	5.16(131)	3.54(90)	3.94(100)	2.56(65)	8.27(210)	0.31(8)	M12	35(16)
	75	FRN075F1S-2U	DCR2-75C	D	10.04(255)	8.86(225)	4.17(106)	3.39(86)	5.71(145)	2.09(53)	5.71(145)	0.24(6)	M12	25(11.4)
	100	FRN100F1S-2U	DCR2-75C	D	10.04(255)	8.86(225)	4.17(106)	3.39 (86)	5.71(145)	2.09 (53)	5.71 (145)	0.24(6)	M12	25(11.4)
	125	FRN125F1S-2U	DCR2-110C	D	11.81(300)	10.43(265)	4.57(116)	3.54(90)	7.28(185)	2.28(58)	6.30 (160)	M8	M12	37(17)
$\begin{aligned} & \text { 3-phase } \\ & 460 \mathrm{~V} \end{aligned}$	1	FRN001F1S-4U	DCR4-0.75	A	2.6(66)	2.20(56)	3.54(90)	2.83(72)	0.79(20)	-	3.70(94)	$0.20 \times 0.31(5.2 \times 8)$	M4	3.1(1.4)
	2	FRN002F1S-4U	DCR4-1.5	A	2.6(66)	2.20(56)	3.54(90)	2.83(72)	0.79(20)	-	3.70(94)	$0.20 \times 0.31(5.2 \times 8)$	M4	3.5(1.6)
	3	FRN003F1S-4U	DCR4-2.2	A	3.39(86)	2.80(71)	3.94(100)	3.15(80)	0.59(15)	-	4.33(110)	$0.24 \times 0.35(6 \times 9)$	M4	4.4(2.0)
	5	FRN005F1S-4U	DCR4-3.7	A	3.39(86)	2.80(71)	3.94(100)	3.15(80)	0.79(20)	-	4.33(110)	$0.24 \times 0.35(6 \times 9)$	M4	5.7(2.6)
	7	FRN007F1S-4U	DCR4-5.5	A	3.39(86)	2.80(71)	3.94(100)	3.15(80)	0.79(20)	-	4.33(110)	$0.24 \times 0.35(6 \times 9)$	M4	5.7(2.6)
	10	FRN010F1S-4U	DCR4-7.5	A	4.37(111)	3.74(95)	3.94(100)	3.15(80)	0.94(24)	-	5.12(130)	$0.28 \times 0.43(7 \times 11)$	M5	9.3(4.2)
	15	FRN015F1S-4U	DCR4-11	A	4.37 (111)	3.74(95)	3.94(100)	3.15(80)	0.94(24)	-	5.12(130)	$0.28 \times 0.43(7 \times 11)$	M5	9.5(4.3)
	20	FRN020F1S-4U	DCR4-15	A	5.75(146)	4.88(124)	4.72(120)	3.78(96)	0.59(15)	-	6.73(171)	$0.28 \times 0.43(7 \times 11)$	M5	13(5.9)
	25	FRN025F1S-4U	DCR4-18.5	A	5.75(146)	4.88(124)	4.72(120)	3.78(96)	0.98(25)	-	6.73(171)	$0.28 \times 0.43(7 \times 11)$	M6	16(7.2)
	30	FRN030F1S-4U	DCR4-22A	A	5.75(146)	4.88(124)	4.72(120)	3.78(96)	0.98(25)	-	6.73(171)	$0.28 \times 0.43(7 \times 11)$	M6	16(7.2)
	40	FRN040F1S-4U	DCR4-30B	B	5.98(152)	3.54(90)	6.18(157)	4.53(115)	3.94(100)	3.07(78)	5.12(130)	0.31(8)	M8	29(13)
	50	FRN050F1S-4U	DCR4-37B	B	6.73(171)	4.33(110)	5.91(150)	4.33(110)	3.94(100)	2.95(75)	5.91(150)	0.31(8)	M8	33(15)
	60	FRN060F1S-4U	DCR4-45B	B	6.73(171)	4.33(110)	6.50(165)	4.92(125)	4.33(110)	3.23(82)	5.91(150)	0.31(8)	M8	40(18)
	75	FRN075F1S-4U	DCR4-55B	B	6.73(171)	4.33(110)	6.69(170)	5.12(130)	4.33(110)	3.35(85)	5.91(150)	0.31(8)	M8	44(20)
	100	FRN100F1S-4U	DCR4-75C	D	10.04(255)	8.86(225)	4.17(106)	3.39(86)	4.92(125)	2.09(53)	5.71(145)	0.24(6)	M10	27(12.4)
	125	FRN125F1S-4U	DCR4-90C	D	10.08(256)	8.86(225)	4.57(116)	3.78(96)	5.12(130)	2.28(58)	5.71(145)	0.24(6)	M12	32(14.7)
	150	FRN150F1S-4U	DCR4-110C	D	12.05(306)	10.43(265)	4.57(116)	3.54(90)	5.51(140)	2.28(58)	6.10(155)	0.31(8)	M12	41(18.4)
	200	FRN200F1S-4U	DCR4-132C	D	12.05(306)	10.43(265)	4.96(126)	3.94(100)	5.91(150)	2.48(63)	6.30 (160)	0.31 (8)	M12	49(22)
	250	FRN250F1S-4U	DCR4-200C	D	14.06(357)	12.20(310)	5.55(141)	4.45(113)	6.50(165)	2.78 (70.5)	7.48(190)	0.39(10)	M12	65(29.5)
	300	FRN300F1S-4U												
	350	FRN350F1S-4U	DCR4-220C	D	14.06(357)	12.20(310)	5.75(146)	4.65(118)	7.28(185)	2.87(73)	7.48(190)	0.39(10)	M12	72(32.5)
	400	FRN400F1S-4U	DCR4-280C	D	13.78(350)	12.20(310)	6.34(161)	5.24(133)	8.27(210)	3.17(80.5)	7.48(190)	M10	M16	79(36)
	450	FRN450F1S-4U												
	500	FRN500F1S-4U	DCR4-355C	E	15.75(400)	13.58(345)	6.14(156)	5.04(128)	7.87(200)	3.07(78)	8.86(225)	M10	-	104(47)
	600	FRN600F1S-4U	DCR4-400C	E	17.52(445)	15.16(385)	5.71(145)	4.61(117)	8.39(213)	2.85(72.5)	9.65(245)	M10	-	115(52)
	700	FRN700F1S-4U	DCR4-450C	E	17.32(440)	15.16(385)	5.91(150)	4.80(122)	8.46(215)	2.95(75)	9.65(245)	M10	-	132(60)
	800	FRN800F1S-4U	DCR4-500C	E	17.52(445)	15.35(390)	6.50(165)	5.39(137)	8.66(220)	3.25(82.5)	9.65(245)	M10	-	154(70)
	900	FRN900F1S-4U	DCR4-560C	F	10.63(270)	5.71(145)	8.19(208)	6.69(170)	7.87(200)	-	18.90(480)	$\phi 0.55(\phi 14)$ long hole	$\phi 0.59(\$ 15)$	154(70)

OInterface card

DeviceNet card (OPC-F1-DEV)
Use this interface card to enter or monitor operation commands or frequency or to change or check the settings of function codes necessary for operation at the master station of DeviceNet.

- Number of connectable nodes: Max. 64 (including the master)
-MAC ID: 0 to 63
- Insulation: 500 V DC (by photocoupler)
-Transmission speed: $500 \mathrm{kbps} / 250 \mathrm{kbps} / 125 \mathrm{kbps}$
- Network power consumption: Max. 50 mA at 24 V DC

BACnet card (OPC-F1-BAC)
Available soon

Relay output card (OPC-F1-RY)
Use this option card to convert the transistor outputs issued from the terminals Y 1 to Y 3 of the main body of FRENIC-Eco into relay outputs.
Note: FRENIC-Eco's terminals Y1 to Y3 cannot be used while this card is installed.
-Relay outputs: Built-in three circuits
-Contact: SPDT contact
-Contact capacity: 250 V AC, $0.3 \mathrm{~A} \cos \phi=0.3$
48 V DC, 0.5 A (resistance load)

PROFIBUS card (OPC-F1-PDP)

With this interface card, you can do the following operations from the PROFIBUS-DP master: issuing the inverter operation command, issuing the frequency command, monitoring the operating status, and changing the settings in all the function codes of FRENIC-Eco.
-Transmission speed: 9.6kbps to 12Mbps
-Transmission distance: Max. 3900ft (1200m)
-Connector: 6 -pole terminal base

LowWorks interface card (OPC-F1-LNW)

With use of this interface card, the peripheral devices (including a master) linked through LonWorks can be connected to FRENIC-Eco. This allows you to issue an operation command or a frequency setting command from the master.
-No. of network variables: 62
-No. of connectable devices: 24
-Transmission speed: 78kbps

OMounting adapter for external cooling (PB-F1-

Use this adapter to shift the heat sink to the outside of the control panel. For 50HP or larger inverters, the head sink can be extended, without using this adapter, by simply relocating the mounting base.

-Extension cable for remote operation (CB-

This straight cable is used to connect the inverter and the remote keypad.

| |
| :--- | :--- |

NEMA1 kit, when fitted to the FRENIC-Eco series, protects the inverter body with the structure the conforms to the NEMA1 standard (approved as UL TYPE1).

-Combination between F1S Series Inverter and NEMA1 Cover

Optional type	Inverter type	Dimensions [inch(mm)]								Outside figure
	FECOA	W	H	D	A	B	C	E	Conduit dia \times pcs	
NEMA1-5.5F1-24	FRN001 to 005F1S-2U	$\begin{gathered} 5.91 \\ (150) \end{gathered}$	$\begin{aligned} & 10.24 \\ & (260) \end{aligned}$	$\begin{gathered} 6.42 \\ (163) \end{gathered}$	-	-	-	-	$\phi 1.06(27) \times 3$	A
	FRN002 to 007F1S-4U									
NEMA1-11F1-24	FRN007 to 010F1S-2U	$\begin{gathered} 8.66 \\ (220) \end{gathered}$	$\begin{aligned} & 10.24 \\ & (260) \end{aligned}$	$\begin{aligned} & 8.47 \\ & (215) \end{aligned}$	-	-	-	-	\$1.06(27) $\times 1$	A
	FRN010 to 015F1S-4U								$\phi 1.34(34) \times 2$	
NEMA1-15F1-24	FRN015F1S-2U	$\begin{aligned} & 8.66 \\ & (220) \end{aligned}$	$\begin{aligned} & 10.24 \\ & (260) \end{aligned}$	$\begin{gathered} 8.47 \\ (215) \end{gathered}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{gathered} 3.57 \\ (90.7) \end{gathered}$	$\begin{gathered} \hline 6.55 \\ (166.4) \end{gathered}$	-	\$1.34(34) $\times 1$	B
	FRN020F1S-4U								$\phi 1.65(42) \times 2$	
NEMA1-22F1-24	FRN020 to 025F1S-2U	$\begin{gathered} 9.84 \\ (250) \end{gathered}$	$\begin{aligned} & 15.75 \\ & (400) \end{aligned}$	$\begin{aligned} & 8.47 \\ & (215) \end{aligned}$	-	-	-	-	$\phi 1.34(34) \times 1$	A
	FRN025 to 030F1S-4U								$\phi 1.65(42) \times 2$	
NEMA1-30F1-24	FRN030F1S-2U	$\begin{gathered} 9.84 \\ (250) \end{gathered}$	$\begin{aligned} & 15.75 \\ & (400) \end{aligned}$	$\begin{aligned} & 8.47 \\ & (215) \end{aligned}$	$\begin{aligned} & 3.94 \\ & (100) \end{aligned}$	$\begin{array}{\|c\|} \hline 7.21 \\ (183.2) \end{array}$	$\begin{aligned} & \hline 8.07 \\ & (205) \end{aligned}$	-	\$1.34(34) $\times 1$	C
	FRN040F1S-4U								$\phi 1.89(48) \times 2$	
NEMA1-45F1-24	FRN040F1S-2U	$\begin{aligned} & 12.60 \\ & (320) \end{aligned}$	$\begin{aligned} & 21.65 \\ & (550) \end{aligned}$	$\begin{aligned} & 10.04 \\ & (255) \end{aligned}$	$\begin{gathered} 4.92 \\ (125) \end{gathered}$	$\begin{array}{\|c\|} \hline 4.35 \\ (110.5) \end{array}$	$\begin{gathered} 12.73 \\ (323.4) \end{gathered}$	$\begin{array}{r} 5.90 \\ (150) \\ \hline \end{array}$	¢1.89(48) $\times 1$	D
	FRN050 to 060F1S-4U								$\phi 2.52(64) \times 3$	
NEMA1-75F1-2	FRN050 to 60F1S-2U	$\begin{aligned} & 13.98 \\ & (355) \end{aligned}$	$\begin{aligned} & 24.21 \\ & (615) \end{aligned}$	$\begin{aligned} & 10.63 \\ & (270) \end{aligned}$	$\begin{aligned} & 7.48 \\ & (190) \end{aligned}$	$\begin{gathered} 4.35 \\ (110.5) \end{gathered}$	$\begin{gathered} 14.11 \\ (358.4) \end{gathered}$	$\begin{aligned} & 8.47 \\ & (215) \end{aligned}$	$\begin{aligned} & \phi 1.89(48) \times 1 \\ & \phi 3.03(77) \times 3 \end{aligned}$	D
	FRN075 to 100F1S-2U	$\begin{aligned} & 13.98 \\ & (355) \end{aligned}$	$\begin{aligned} & 29.13 \\ & (740) \end{aligned}$	$\begin{aligned} & 10.63 \\ & (270) \end{aligned}$						
NEMA1-75F1-4	FRN075F1S-4U	$\begin{aligned} & 13.98 \\ & (355) \end{aligned}$	$\begin{aligned} & 21.65 \\ & (550) \end{aligned}$	$\begin{aligned} & 10.63 \\ & (270) \end{aligned}$	$\begin{aligned} & 3.54 \\ & (90) \end{aligned}$	$\begin{gathered} 4.35 \\ (110.5) \end{gathered}$	$\begin{gathered} 14.11 \\ (358.4) \end{gathered}$	$\begin{aligned} & 4.53 \\ & (115) \end{aligned}$	$\begin{aligned} & \phi 1.89(48) \times 1 \\ & \phi 2.52(64) \times 3 \end{aligned}$	D
	FRN100F1S-4U	$\begin{aligned} & 13.98 \\ & (355) \end{aligned}$	$\begin{aligned} & 24.21 \\ & (615) \end{aligned}$	$\begin{aligned} & 10.63 \\ & (270) \end{aligned}$						
NEMA1-110F1-4	FRN125 to 150F1S-4U	$\begin{aligned} & 13.98 \\ & (355) \end{aligned}$	$\begin{aligned} & 29.13 \\ & (740) \end{aligned}$	$\begin{aligned} & 11.81 \\ & (300) \end{aligned}$	$\begin{aligned} & \hline 3.74 \\ & (95) \end{aligned}$	$\begin{gathered} 5.53 \\ (140.5) \end{gathered}$	$\begin{gathered} \hline 14.11 \\ (358.4) \end{gathered}$	$\begin{aligned} & 4.72 \\ & (120) \end{aligned}$	$\begin{aligned} & \hline \phi 1.89(48) \times 1 \\ & \phi 2.52(64) \times 3 \end{aligned}$	D
NEMA1-132F1-4	FRN200F1S-4U	$\begin{aligned} & 20.87 \\ & (530) \end{aligned}$	$\begin{aligned} & 29.13 \\ & (740) \end{aligned}$	$\begin{aligned} & 12.40 \\ & (315) \end{aligned}$	$\begin{aligned} & 3.74 \\ & (95) \end{aligned}$	$\begin{gathered} 5.24 \\ (133) \end{gathered}$	$\begin{gathered} 21.00 \\ (533.4) \end{gathered}$	$\begin{aligned} & 5.12 \\ & (130) \end{aligned}$	$\begin{aligned} & \phi 1.89(48) \times 1 \\ & \phi 2.52(64) \times 3 \end{aligned}$	D
NEMA1-110F1-2	FRN125F1S-2U	$\begin{aligned} & 26.77 \\ & (680) \end{aligned}$	$\begin{aligned} & 34.65 \\ & (880) \end{aligned}$	$\begin{aligned} & \hline 15.55 \\ & (395) \end{aligned}$	$\begin{aligned} & 14.02 \\ & (356) \end{aligned}$	$\begin{aligned} & 10.04 \\ & (255) \end{aligned}$	$\begin{gathered} 26.90 \\ (683.2) \end{gathered}$	$\begin{aligned} & 15.16 \\ & (385) \end{aligned}$	$\begin{aligned} & \phi 1.89(48) \times 1 \\ & \phi 3.54(90) \times 3 \end{aligned}$	D
NEMA1-220F1-4	FRN250 to 300F1S-4U	$\begin{aligned} & 20.87 \\ & (530) \end{aligned}$	$\begin{gathered} \hline 39.37 \\ (1000) \end{gathered}$	$\begin{aligned} & 14.17 \\ & (360) \end{aligned}$	$\begin{gathered} 5.12 \\ (130) \end{gathered}$	$\begin{aligned} & \hline 7.01 \\ & (178) \end{aligned}$	$\begin{gathered} \hline 21.00 \\ (533.4) \end{gathered}$	$\begin{gathered} 6.50 \\ (165) \end{gathered}$		D
	FRN350F1S-4U								$\phi 4.33(110) \times 3$	
NEMA1-280F1-4	FRN400 to 450F1S-4U	$\begin{aligned} & \hline 26.77 \\ & (680) \end{aligned}$	$\begin{gathered} 39.37 \\ (1000) \end{gathered}$	$\begin{aligned} & 14.96 \\ & (380) \end{aligned}$	$\begin{aligned} & 9.65 \\ & (245) \end{aligned}$	$\begin{gathered} 5.58 \\ (141.6) \end{gathered}$	$\begin{gathered} \hline 26.94 \\ (684.2) \end{gathered}$	$\begin{aligned} & 11.02 \\ & (280) \end{aligned}$	$\begin{aligned} & \phi 1.89(48) \times 1 \\ & \phi 4.33(110) \times 3 \end{aligned}$	D
NEMA1-400F1-4	FRN500F1S-4U	$\begin{aligned} & 26.77 \\ & (680) \end{aligned}$	$\begin{gathered} 55.12 \\ (1400) \end{gathered}$	$\begin{aligned} & 17.32 \\ & (440) \end{aligned}$	$\begin{gathered} 9.95 \\ (240) \end{gathered}$	$\begin{array}{\|c\|} \hline 7.94 \\ (201.6) \end{array}$	$\begin{gathered} \hline 26.94 \\ (684.2) \end{gathered}$	$\begin{aligned} & 10.83 \\ & (275) \end{aligned}$	$\phi 1.89(48) \times 1$	D
	FRN600F1S-4U								$\phi 5.63(14) \times 3$	
NEMA1-560F1-4	FRN700F1S-4U	$\begin{aligned} & 34.65 \\ & (880) \end{aligned}$	$\begin{gathered} 55.12 \\ (1400) \end{gathered}$	$\begin{aligned} & 17.32 \\ & (440) \end{aligned}$	$\begin{gathered} 9.95 \\ (240) \end{gathered}$	$\begin{array}{\|c} 7.94 \\ (201.6) \end{array}$	$\begin{gathered} 34.81 \\ (884.2) \end{gathered}$	$\begin{aligned} & 10.83 \\ & (275) \end{aligned}$	$\begin{aligned} & \phi 1.89(48) \times 1 \\ & \phi 5.63(14) \times 3 \end{aligned}$	D
	FRN800F1S-4U									
	FRN900F1S-4U									

Fig. A

Fig. C

Fig. B

Fig. D

Required torque and wire size

Power supply voltage	Inverter type	Required torque lb -in (N•m)			Wire size AWG					
		Main terminal	Aux. Control Power Supply R0, T0	Control circuit	Main terminal	Aux. Control Power Supply R0, T0	Aux. Fan Power Supply R1, T1	Control circuit		
				Europe type terminal block				Europe type terminal block		
Three-phase 208 V	FRN001F1S-2U	$\begin{aligned} & 15.9 \\ & (1.8) \end{aligned}$	$\begin{aligned} & 10.6 \\ & (1.2) \end{aligned}$	$\begin{gathered} 4.4 \\ (0.5) \end{gathered}$	14	14	-	20	10	15
	FRN002F1S-2U								15	
	FRN003F1S-2U								20	20
	FRN005F1S-2U				12				35	30
	FRN007F1S-2U	$\begin{aligned} & 33.6 \\ & (3.8) \end{aligned}$			8				60	50
	FRN010F1S-2U				4				70	70
	FRN015F1S-2U	$\begin{aligned} & 51.3 \\ & (5.8) \end{aligned}$							100	100
	FRN020F1S-2U				3				125	125
	FRN025F1S-2U				2				150	150
	FRN030F1S-2U	$\begin{aligned} & 119.4 \\ & (13.5) \end{aligned}$			1/0				175	175
	FRN040F1S-2U								200	200
	FRN050F1S-2U	$\begin{gathered} 238.9 \\ (27) \end{gathered}$			3/0		14		225	225
	FRN060F1S-2U				4/0				300	300
	FRN075F1S-2U				300					
	FRN100F1S-2U				2/0x2				350	350
	FRN125F1S-2U	$\begin{gathered} 424.7 \\ (48) \end{gathered}$			4/0x2				400	400
Three-phase 460 V	FRN001F1S-4U	$\begin{aligned} & 15.9 \\ & (1.8) \end{aligned}$	$\begin{aligned} & 10.6 \\ & (1.2) \end{aligned}$	$\begin{gathered} 4.4 \\ (0.5) \end{gathered}$	14	14	-	20	6	15
	FRN002F1S-4U								10	
	FRN003F1S-4U								15	
	FRN005F1S-4U								20	20
	FRN007F1S-4U								30	30
	FRN010F1S-4U	$\begin{aligned} & \hline 33.6 \\ & (3.8) \\ & \hline \end{aligned}$			12				40	
	FRN015F1S-4U				10				50	40
	FRN020F1S-4U	$\begin{aligned} & 51.3 \\ & (5.8) \end{aligned}$			8				70	50
	FRN025F1S-4U								80	70
	FRN030F1S-4U				6				100	80
	FRN040F1S-4U	$\begin{aligned} & 119.4 \\ & (13.5) \end{aligned}$			4					100
	FRN050F1S-4U				2				125	125
	FRN060F1S-4U				1				150	150
	FRN075F1S-4U				1/0		14		175	175
	FRN100F1S-4U				3x2					
	FRN125F1S-4U	$\begin{gathered} 238.9 \\ (27) \end{gathered}$			4/0				200	200
	FRN150F1S-4U				250				225	225
	FRN200F1S-4U				2/0x2				300	300
	FRN250F1S-4U	$\begin{gathered} 424.7 \\ (48) \end{gathered}$			500				400	400
	FRN300F1S-4U				4/0x2				450	450
	FRN350F1S-4U				300x2				500	500
	FRN400F1S-4U				350x2				600	600
	FRN450F1S-4U				400x2					
	FRN500F1S-4U				300×3				700	700
	FRN600F1S-4U				350x3				1000	1000
	FRN700F1S-4U				300x4				1000	1000
	FRN800F1S-4U				350x4				1200	1200
	FRN900F1S-4U				400x4				1600	1600

[^1]
To all our customers who purchase Fuji Electric FA Components \& Systems' products:

Please take the following items into consideration when placing your order.

When requesting an estimate and placing your orders for the products included in these materials, please be aware that any items such as specifications which are not specifically mentioned in the contract, catalog, specifications or other materials will be as mentioned below.
In addition, the products included in these materials are limited in the use they are put to and the place where they can be used, etc., and may require periodic inspection. Please confirm these points with your sales representative or directly with this company.
Furthermore, regarding purchased products and delivered products, we request that you take adequate consideration of the necessity of rapid receiving inspections and of product management and maintenance even before receiving your products.

1. Free of Charge Warranty Period and Warranty Range

1-1 Free of charge warranty period

(1) The product warranty period is "1 year from the date of purchase" or 24 months from the manufacturing date imprinted on the name place, whichever date is earlier.
(2) However, in cases where the installation environment, conditions of use, use frequency and times used, etc., have an effect on product life, this warranty period may not apply.
(3) Furthermore, the warranty period for parts restored by Fuji Electric's Service Department is "6 months from the date that repairs are completed."

1-2 Warranty range

(1) In the event that breakdown occurs during the product's warranty period which is the responsibility of Fuji Electric, Fuji Electric will replace or repair the part of the product that has broken down free of charge at the place where the product was purchased or where it was delivered. However, if the following cases are applicable, the terms of this warranty may not apply.

1) The breakdown was caused by inappropriate conditions, environment, handling or use methods, etc. which are not specified in the catalog, operation manual, specifications or other relevant documents.
2) The breakdown was caused by product other than the purchased or delivered Fuji product.
3) The breakdown was caused by product other than Fuji product, such as the customer's equipment or software design, etc.
4) Concerning the Fuji's programmable products, the breakdown was caused by a program other than a program supplied by this company, or the results from using such a program.
5) The breakdown was caused by modifications or repairs affected by a party other than Fuji Electric.
6) The breakdown was caused by improper maintenance or replacement using consumables, etc. specified in the operation manual or catalog, etc.
7) The breakdown was caused by a chemical or technical problem that was not foreseen when making practical application of the product at the time it was purchased or delivered.
8) The product was not used in the manner the product was originally intended to be used.
9) The breakdown was caused by a reason which is not this company's responsibility, such as lightning or other disaster.
(2) Furthermore, the warranty specified herein shall be limited to the purchased or delivered product alone.
(3) The upper limit for the warranty range shall be as specified in item (1) above and any damages (damage to or loss of machinery or equipment, or lost profits from the same, etc.) consequent to or resulting from breakdown of the purchased or delivered product shall be excluded from coverage by this warranty.

1-3. Trouble diagnosis

As a rule, the customer is requested to carry out a preliminary trouble diagnosis. However, at the customer's request, this company or its service network can perform the trouble diagnosis on a chargeable basis. In this case, the customer is asked to assume the burden for charges levied in accordance with this company's fee schedule.
2. Exclusion of Liability for Loss of Opportunity, etc.

Regardless of whether a breakdown occurs during or after the free of charge warranty period, this company shall not be liable for any loss of opportunity, loss of profits, or damages arising from special circumstances, secondary damages, accident compensation to another company, or damages to products other than this company's products, whether foreseen or not by this company, which this company is not be responsible for causing.
3. Repair Period after Production Stop, Spare Parts Supply Period (Holding Period)

Concerning models (products) which have gone out of production, this company will perform repairs for a period of 7 years after production stop, counting from the month and year when the production stop occurs. In addition, we will continue to supply the spare parts required for repairs for a period of 7 years, counting from the month and year when the production stop occurs. However, if it is estimated that the life cycle of certain electronic and other parts is short and it will be difficult to procure or produce those parts, there may be cases where it is difficult to provide repairs or supply spare parts even within this 7 -year period. For details, please confirm at our company's business office or our service office.

4. Transfer Rights

In the case of standard products which do not include settings or adjustments in an application program, the products shall be transported to and transferred to the customer and this company shall not be responsible for local adjustments or trial operation.

5. Service Contents

The cost of purchased and delivered products does not include the cost of dispatching engineers or service costs. Depending on the request, these can be discussed separately.

6. Applicable Scope of Service

Above contents shall be assumed to apply to transactions and use of the country where you purchased the products. Consult the local supplier or Fuji for the detail separetaly.

When running general-purpose motors

- Driving a 460V general-purpose motor

When driving a 460 V general-purpose motor with an inverter using extremely long cables, damage to the insulation of the motor may occur. Use an output circuit filter (OFL) if necessary after checking with the motor manufacturer. Fuji's motors do not require the use of output circuit filters because of their reinforced insulation.

- Torque characteristics and temperature rise When the inverter is used to run a general-purpose motor, the temperature of the motor becomes higher than when it is operated using a commercial power supply. In the low-speed range, the cooling effect will be weakened, so decrease the output torque of the motor. If constant torque is required in the low-speed range, use a Fuji inverter motor or a motor equipped with an externally powered ventilating fan.

- Vibration

When the motor is mounted to a machine, resonance may be caused by the natural frequencies, including that of the machine. Operation of a 2 -pole motor at 60 Hz or more may cause abnormal vibration.

* Study use of tier coupling or dampening rubber.
* It is also recommended to use the inverter jump frequency control to avoid resonance points.

- Noise

When an inverter is used with a general-purpose motor, the motor noise level is higher than that with a commercial power supply. To reduce noise, raise carrier frequency of the inverter. High-speed operation at 60 Hz or more can also result in more noise.

When running special motors

- High-speed motors

When driving a high-speed motor while setting the frequency higher than 120 Hz , test the combination with another motor to confirm the safety of highspeed motors.

- Explosion-proof motors

When driving an explosion-proof motor with an inverter, use a combination of a motor and an inverter that has been approved in advance.

- Submersible motors and pumps

These motors have a larger rated current than general-purpose motors. Select an inverter whose rated output current is greater than that of the motor.
These motors differ from general-purpose motors in thermal characteristics. Set a low value in the thermal time constant of the motor when setting the electronic thermal facility.

- Brake motors

For motors equipped with parallel-connected brakes, their braking power must be supplied from the primary circuit (commercial power supply). If the brake power is connected to the inverter power output circuit (secondary circuit) by mistake, problems may occur.
Do not use inverters for driving motors equipped with series-connected brakes.

- Geared motors

If the power transmission mechanism uses an oil-
lubricated gearbox or speed changer/reducer, then continuous motor operation at low speed may cause poor lubrication. Avoid such operation.

- Synchronous motors

It is necessary to use software suitable for this motor type. Contact Fuji for details.

- Single-phase motors

Single-phase motors are not suitable for inverterdriven variable speed operation. Use three-phase motors.
*Even if a single-phase power supply is available, use a three-phase motor as the inverter provides three-phase output.

Environmental conditions

- Installation location

Use the inverter in a location with an ambient temperature range of -10 to $50^{\circ} \mathrm{C}\left(14\right.$ to $122^{\circ} \mathrm{F}$).
The inverter and braking resistor surfaces become hot under certain operating conditions. Install the inverter on nonflammable material such as metal. Ensure that the installation location meets the environmental conditions specified in "Environment" in inverter specifications.

Combination with peripheral devices

- Installing a molded case circuit

 breaker (MCCB)Install a recommended molded case circuit breaker (MCCB) or a ground-fault circuit interrupter (GFCI) in the primary circuit of each inverter to protect the wiring. Ensure that the circuit breaker capacity is equivalent to or lower than the recommended capacity.

- Installing a magnetic contactor (MC) in the output (secondary) circuit
If a magnetic contactor (MC) is mounted in the inverter's secondary circuit for switching the motor to commercial power or for any other purpose, ensure that both the inverter and the motor are fully stopped before you turn the MC on or off. Remove the surge killer integrated with the MC.
- Installing a magnetic contactor (MC)

in the input (primary) circuit

Do not turn the magnetic contactor (MC) in the primary circuit on or off more than once an hour as an inverter fault may result. If frequent starts or stops are required during motor operation, use FWD/REV signals.

- Protecting the motor

The electronic thermal facility of the inverter can protect the motor. The operation level and the motor type (general-purpose motor, inverter motor) should be set. For high-speed motors or water-cooled motors, set a small value for the thermal time constant to protect the motor.
If you connect the motor thermal relay to the motor with a long cable, a high-frequency current may flow into the wiring stray capacitance. This may cause the relay to trip at a current lower than the set value for the thermal relay. If this happens, lower the carrier frequency or use the output circuit filter (OFL).

- Discontinuance of power-factor correcting capacitor Do not mount power factor correcting capacitors in the inverter (primary) circuit. (Use the DC REACTOR to improve the inverter power factor.) Do
not use power factor correcting capacitors in the inverter output circuit (secondary). An overcurrent trip will occur, disabling motor operation.
- Discontinuance of surge killer

Do not mount surge killers in the inverter output (secondary) circuit.

- Reducing noise

Use of a filter and shielded wires are typical measures against noise to ensure that EMC Directives are met.

- Measures against surge currents

If an overvoltage trip occurs while the inverter is stopped or operated under a light load, it is assumed that the surge current is generated by open/close of the phase-advancing capacitor in the power system.
We recommend connecting a DC REACTOR to the inverter.

- Megger test

When checking the insulation resistance of the inverter, use a 500 V megger and follow the instructions contained in the Instruction Manual.

Wiring

- Wiring distance of control circuit

When performing remote operation, use the twisted shield wire and limit the distance between the inverter and the control box to 65.6 ft (20 m).

- Wiring length between inverter and motor If long wiring is used between the inverter and the motor, the inverter will overheat or trip as a result of overcurrent (high-frequency current flowing into the stray capacitance) in the wires connected to the phases. Ensure that the wiring is shorter than 164 ft (50 m). If this length must be exceeded, lower the carrier frequency or mount an output circuit filter (OFL).

- Wiring size

Select cables with a sufficient capacity by referring to the current value or recommended wire size.

- Wiring type

Do not use multicore cables that are normally used for connecting several inverters and motors.

- Grounding

Securely ground the inverter using the grounding terminal.

Selecting inverter capacity

- Driving general-purpose motor

Select an inverter according to the applicable motor ratings listed in the standard specifications table for the inverter. When high starting torque is required or quick acceleration or deceleration is required, select an inverter with a capacity one size greater than the standard.

- Driving special motors

Select an inverter that meets the following condition: Inverter rated current > Motor rated current.

Transportation and storage

When transporting or storing inverters, follow the procedures and select locations that meet the environmental conditions that agree with the inverter specifications.

[^0]: *1 When you make settings from the keypad, the incremental unit is restricted by the number of digits that the LED monitor can display. (Example) If the setting range is from -200.00 to 200.00, the incremental unit is as follows:
 "1" for -200 to -100, " 0.1 " for -99.9 to $-10.0, ~ " 0.01 "$ for -9.99 to $-0.01, ~ " 0.01 "$ for 0.00 to 99.99 , and " 0.1 " for 100.0 to 200.0

[^1]: *1: Select the rated current of a fuse or a circuit breaker which is suitable to the connecting wire size.

