e－Front runners
High Performance Compact Inverters
FRENIC－Multi Series

With advanced technology built in,

Gentler on the environment

Complies with European regulations that limit the use of speciic hazardous substances (ROHS).

These inverters are gentle on the environment. Use of 6 hazardous substances is limited.(except for interior soldering in the power module.)

<Six Hazardous Substances>

Lead, Mercury, Cadmium, Hexavalent Chromium, Polybrominated biphenyl (PBB), Polybrominated diphenyl ether (PBDE)

<About RoHS>

The Directive 2002/95/EC, promulgated by the European Parliament and European Council, limits the use of specific hazardous substances included in electrical and electronic devices.

Long-life design!

The design life of each internal component with limited life has been extended to 10 years. This helps to extend the maintenance cycle for your equipment.

Limited Life Component	Service Life
Main circuit capacitors	10 years
Electrolytic capacitors on the printed circuit board	10 years
Cooling fan	10 years

Conditions: Ambient temperature is $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ and load factor is 80% of the inverter's rated current.

Noise is reduced by the built-in EMC filter.

Use of a built-in EMC filter that reduces noise generated by the inverter makes it possible to reduce the effect on peripheral equipment.
-Standard Series

-Semi-Standard type

-EMC filter built-in type

-Option card

-PG interface card (5V type)(12V type)
-RS-485 communication card

- Synchronized operation card
-Device Net card
-Profibus-DP card
-DIO card
-CC-Link card

Shortened setting time in slip compensation control

Through "slip compensation control" + "voltage tuning," speed control accuracy at low speeds is improved. This minimizes variations in speed control accuracy at times when the load varies, and since the time at creep speeds is shortened, single cycle tact times can be shortened.

Equipped with the highest level CPU for its class!
The highest level CPU of any inverter is used. Computation and processing capacity is doubled over the previous inverter, improving speed control accuracy.
-CPU speed comparison

Compatible with PG feedback control

<Example of conveyor operation pattern>
 improves conveyor positioning accuracy.

- Positioning time can be shortened.
- Improves measuring accuracy on a scale.
- Without speed feedback

The speed just before positioning varies, so positioning accuracy drops.

- With speed feedback

Tripless deceleration by automatic deceleration control

The inverter controls the energy level generated and the deceleration time, and so deceleration stop can be accomplished without tripping due to overvoltage.

Optimum for the operations specific to vertical and horizontal conveyance

Hit-and-stop control is realized more easily!

Impacts are detected mechanically and not only can the inverter's operation pattern be set on coast-to-stop or deceleration stop, but switching from torque limitation to current limitation and generating a holding torque (hit-andstop control) can be selected, making it easy to adjust brake application and release timing.

Inclusion of a brake signal makes it even more convenient.

■ At brake release time
After the motor operates, torque generation is detected and signals are output.

- At brake application time

Brake application that matches the timing can be done, and so mechanical brake wear is reduced.

Limit operations can be selected to match your equipment!

Inverters are equipped with two limit operations, "torque limitation" and "current limitation," so either can be selected to match the equipment you are using the inverter with.

\square Torque limitation

In order to protect mechanical systems, this function accurately limits the torque generated by the motor. (Instantaneous torque cannot be limited.)
■ Current limitation
This function limits the current flowing to the motor to protect the motor thermally or to provide rough load limitation. (Instantaneous current cannot be limited. Auto tuning is not required.)

Simple and thorough maintenance

The life information on each of the inverter's limited life components is displayed.

Simple cooling fan replacement!

Construction is simple, enabling quick removal of the top cover and making it easy to replace the cooling fan. (7.5HP or higher models)

Cooling fan replacement procedure

The cover on top of the inverter can be quickly removed.

Simply disconnect the power connector and replace the cooling fan.

Informaition that Contributes to equipment maintenance is displayed!

In addition to inverter maintenance information, data that also take equipment maintenance into consideration are displayed.

Item	Purpose
Motor cumulative running time (hr)	The actual cumulative running time of the equipment (motor) the inverter is being used with is calculated. <Example of use> If the inverter is used to control a fan, this information is an indication of the timing for replacing the belt that is used on the pulleys.
Number	The number of times the inverter starts and stops can be counted. <Example of use> of starts (time number of equipment starts and stops is recorded, and so this
The numation can be used as a guideline for parts replacement timing informune in equipment in which starting and stopping puts a heavy load on the machinery.	

The alarm history records the latest four incidents.

Detailed information can be checked for the four most recent alarms.

Simple operation, simple connection

A removable keypad is standard equipment.

The keypad can be easily removed and reset, making remote operation possible. If the back cover packed with the inverter is installed and a LAN cable is used, the keypad can be easily mounted on the equipment's control panel.

A removable interface card is adapted.

Wiring is quite easy because the interface card can be attached and detached as a terminal base for control signals.

The following option cards are available.
Option card names

RS-485 communication card
PG interface card (for 5V)
PG interface card (for 12V)
CC-Link card
DeviceNet card
DIO card
SY (synchronized operation) card
PROFIBUS-DP card

Note) The inverter that can be used with the SY card includes special specifications. When ordering the SY card, please order together with the inverter in a set.

A multifunction keypad which enables a wide variety of operations is available.

A multi-function keypad is available as an option. This keypad features a large 7 -segment LED with five digits and large back-lighted liquid crystal panel. Its view-ability is high, and guidance is displayed on the liquid crystal panel, therefore operations can be conducted simply. (A
 copy function is included.)
Inverter support loader software is available. (On sale soon)
Windows compatible loader software is available to simplify the setting and management of function codes.

Simulated failure enables peripheral device operation checks.
The inverter has the function for outputting dummy alarm signals, enabling simple checking of sequence operations of peripheral devices from the control panel where the inverter is used.

Side-by-side mounting saves space!

If your control panel is designed to use multiple inverters, these inverters make it possible to save space through their horizontal side-by-side installation. (5HP or smaller models)

(The 3-phase 230V, 1 HP model is shown here.) unit:inch(mm)

Resistors for suppressing inrush current are built in, making it possible to reduce the capacity of peripheral equipment.
When FRENIC-Multi Series (including FRENIC-Mini Series, FRENIC-Eco Series and 11 Series) is used, the built-in resistor suppresses the inrush current generated when the motor starts. Therefore, it is possible to select peripheral equipment with lower capacity when designing your system than the equipment needed for direct connection to the motor.

Outside panel cooling is also made possible using the mounting adapter for external cooling (option).

The mounting adapter for external cooling (option) can be installed easily as an outside panel cooling system.

First time in
 the industry

New system for more energy-efficient operation!
Previous energy saving operation functions worked only to control the motor's loss to keep it at a minimum in accordance with the load condition. In the newly developed FRENIC-Multi Series, the focus has been switched away from the motor alone to both the motor and the inverter as electrical products. As a result, we incorporated a new control system (optimum and minimum power control) that minimizes the power consumed by the inverter itself (inverter loss) and the loss of the motor.

Smooth starts through the pick-up function!

In the case where a fan is not being run by the inverter but is turning free, the fan's speed is checked, regardless of its rotational direction, and operation of the fan is picked up to start the fan smoothly. This function is convenient in such cases as when switching instantaneously from commercial power supply to the inverter.

Equipped with a full range of PID control functions!

Differential alarm and absolute value alarm outputs have been added for PID adjusters which carry out process controls such as temperature, pressure and flow volume control. In addition, an anti-reset windup function to prevent PID control overshoot and other PID control functions which can be adjusted easily through PID output limiter, integral hold/reset signals are provided. The PID output limiter and integral hold/reset signals can also be used in cases where the inverter is used for dancer control.

Operating signal trouble is avoided by the command loss detection function!

If frequency signals connected to the inverter (0 to $10 \mathrm{~V}, 4$ to 20 mA , Multi-speed signals, communications, etc.) are interrupted, the missing frequency commands are detected as a "command loss." Further, the frequency that is output when command loss occurs can be set in advance, so operation can be continued even in cases where the frequency signal lines are cut due to mechanical vibrations of the equipment, etc.

An overload stop function protects equipment from over-operation!)

If the load on equipment suddenly becomes great while controlled by the inverter, the inverter can be switched to
deceleration stop or to coast-to-stop operation to prevent damage to the equipment.

Continuous equipment operation with overload avoidance contro!!

If foreign matter gets wrapped around a fan or pulley and the load increases, resulting in a sudden temperature rise in the inverter or an abnormal rise in the ambient temperature, etc. and the inverter becomes overloaded, it reduces the motor's speed, reducing the load and continuing operation.

RS－485 communications（connector）is standard！

A connector（RJ－45）that is compatible with RS－485 communications is standard equipment（1 port，also used for keypad communications），so the inverter can be connected easily using a LAN cable（10BASE）．

Complies with optional networks using option cards．

Installation of special interface cards（option）makes it possible to connect to the following networks．

- DeviceNet	•CC－Link
\cdot PROFIBUS－DP	

Wiring is easy with the RS－485 communications card（optional）！
The RS－485 communications card is also available as an option．When it is installed，you can add a branch connection that is separate from the communications port provided as standard equipment（RJ－45 connector），and have two communications ports．

Important Points
（1）A separate branch adaptor is not required because of two ports．
（2）The built－in terminating resistor makes provision of a separate terminating resistor unnecessary．

Example of connection configuration with peripheral equipment

－Complies with standards
－Sink／Source switchable
－Wide voltage range
－The multi－function keypad displays multiple languages（Japanese， English，German，French，Spanish，Italian，Chinese，Korean）．
＊This product supports multiple languages such as Japanese，English，German， French，Spanish and Italian．Another multiple language version is also available， which supports Japanese，English，Chinese，Korean and simplified Chinese． （Contact us for the detail separately．）

Safety
 Precautions

Model List

How to read the inverter model

OStandard type

■Three-phase 230V (1/8 to 20HP)

Item			Specifications										
Type (FRN $\square \square \square \mathrm{G}$ 1S-2U)			F12	F25	F50	001	002	003	005	007	010	015	020
Applicable motor rating [HP] (*1)			1/8	1/4	1/2	1	2	3	5	7.5	10	15	20
	Rated capacity [kVA] (0.3	0.6	1.2	2.0	3.2	4.4	6.8	10	13	19	24
	Rated voltage [V] (*3)		Three-phase 200V to 240V (with AVR function)										
	Rated current [A] (*4)		$\begin{gathered} \hline 0.8 \\ (0.7) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.5 \\ (1.4) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.0 \\ (2.5) \\ \hline \end{gathered}$	$\begin{gathered} 5.0 \\ (4.2) \end{gathered}$	$\begin{gathered} 8.0 \\ (7.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 11 \\ (10) \end{gathered}$	$\begin{gathered} \hline 17 \\ (16.5) \end{gathered}$	$\begin{gathered} 25 \\ (23.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 33 \\ (31) \\ \hline \end{gathered}$	$\begin{gathered} 47 \\ (44) \end{gathered}$	$\begin{gathered} 60 \\ (57) \\ \hline \end{gathered}$
	Overload capability		150\% of rated current for $1 \mathrm{~min}, 200 \%-0.5 \mathrm{~s}$										
	Rated frequency [Hz]		50, 60 Hz										
	Phases, voltage, frequency		Three-phase, 200 to $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$										
	Voltage/frequency variations		Voltage: +10 to -15\% (Voltage unbalance (*8): 2% or less) Frequency: +5 to -5%										
	Rated current [A] (*9)	(with DCR)	0.57	0.93	1.6	3.0	5.7	8.3	14.0	21.1	28.8	42.2	57.6
		(without DCR)	1.1	1.8	3.1	5.3	9.5	13.2	22.2	31.5	42.7	60.7	80
	Required power supply capacity [kVA] (*5)		0.2	0.3	0.6	1.1	2.0	2.9	4.9	7.4	10	15	20
	Torque [\%] (*6)		150		100		70	40		20			
	Torque [\%] (*7)		-		150								
	DC injection braking		Starting frequency: 0.1 to 60.0 Hz , Braking time: 0.0 to 30.0 s , Braking level: 0 to 100% of rated current										
	Braking transistor		Built-in										
Applicable safety standards			UL508C, C22.2No.14, EN50178:1997										
Enclosure (IEC60529)			IP20, UL open type										
Cooling method			Natural cooling				Fan cooling						
Weight / Mass [lbs(kg)]			1.3(0.6)	1.3(0.6)	1.5(0.7)	1.8(0.8)	3.7(1.7)	3.7(1.7)	5.1(2.3)	7.5(3.4)	7.9(3.6)	13(6.1)	16(7.1)

Three-phase 460V (1/2 to 20HP)

Item			Specifications								
Type (FRN $\square \square \square \mathrm{E}$ 1S-4U)			F50	001	002	003	005	007	010	015	020
Applicable motor rating [HP] (*1)			1/2	1	2	3	5	7.5	10	15	20
	Rated capacity [kVA]		1.2	2.0	2.9	4.4	7.2	10	14	19	24
	Rated voltage [V] (*3)		Three-phase 380V to 480V (with AVR function)								
	Rated current [A] (*4)		1.5	2.5	3.7	5.5	9.0	13	18	24	30
	Overload capability		150\% of rated current for $1 \mathrm{~min}, 200 \%-0.5 \mathrm{~s}$								
	Rated frequency [Hz]		50, 60Hz								
	Phases, voltage, frequency		Three-phase, 380 to $480 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$								
	Voltage/frequency variations		Voltage: +10 to -15\% (Voltage unbalance (*8): 2\% or less) Frequency: +5 to -5%								
	Rated current [A] (*9)	(with DCR)	0.85	1.6	3.0	4.4	7.3	10.6	14.4	21.1	28.8
		(without DCR)	1.7	3.1	5.9	8.2	13.0	17.3	23.2	33.0	43.8
	Required power supply capacity [kVA] (*5)		0.6	1.1	2.0	2.9	4.9	7.4	10	15	20
	Torque [\%] (*6)		100		70	40		20			
	Torque [\%] (*7)		150								
	DC injection braking		Starting frequency: 0.1 to 60.0 Hz , Braking time: 0.0 to 30.0 s , Braking level: 0 to 100% of rated current								
	Braking transistor		Built-in								
Applicable safety standards			UL508C, C22.2No.14, EN50178:1997								
Enclosure (IEC60529)			IP20, UL open type								
Cooling method			Natural cooling		Fan cooling						
Weight / Mass [lbs(kg)]			2.4(1.1)	2.6(1.2)	3.7(1.7)	3.7(1.7)	5.1(2.3)	7.5(3.4)	7.9(3.6)	13(6.1)	16(7.1)

-Single-phase 230 V (1/8 to 3HP)

Item			Specifications					
Type (FRN $\square \square \square \mathrm{E}$ 1S-7U)			F12	F25	F50	001	002	003
Applicable motor rating [HP] (*1)			1/8	1/4	1/2	1	2	3
	Rated capacity [kVA] (*2)		0.3	0.6	1.2	2.0	3.2	4.4
	Rated voltage [V] (*3)		Three-phase 200V to 240V (with AVR function)					
	Rated current [A] (*4)		$\begin{gathered} 0.8 \\ (0.7) \end{gathered}$	$\begin{gathered} 1.5 \\ (1.4) \end{gathered}$	$\begin{gathered} \hline 3.0 \\ (2.5) \end{gathered}$	$\begin{gathered} 5.0 \\ (4.2) \end{gathered}$	$\begin{gathered} 8.0 \\ (7.0) \end{gathered}$	$\begin{gathered} \hline 11 \\ (10) \end{gathered}$
	Overload capability		150\% of rated current for $1 \mathrm{~min}, 200 \%-0.5 \mathrm{~s}$					
	Rated frequency [Hz]		50, 60 Hz					
	Phases, voltage, frequency		Single-phase, 200 to $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$					
	Voltage/frequency variations		Voltage: +10 to -10\%, Frequency: +5 to -5\%					
	Rated current [A] (*9)	(with DCR)	1.1	2.0	3.5	6.4	11.6	17.5
		(without DCR)	1.8	3.3	5.4	9.7	16.4	24.8
	Required power supply capacity [kVA] (*5)		0.3	0.4	0.7	1.3	2.4	3.5
	Torque [\%] (*6)		150		100		70	40
	Torque [\%] (*7)		-		150			
	DC injection braking		Starting frequency: 0.1 to 60.0 Hz , Braking level: 0 to 100% of rated current, Braking time: 0.0 to 30.0 s					
	Braking transistor		Built-in					
Applicable safety standards			UL508C, C22.2No.14, EN50178:1997					
Enclosure (IEC60529)			IP20, UL open type					
Cooling method			Natural cooling				Fan cooling	
Weight / Mass [lbs(kg)]			1.3(0.6)	1.3(0.6)	1.5(0.7)	2.0(0.9)	4.0(1.8)	5.3(2.4)

(*1) Fuji's 4-pole standard motor
(*2) Rated capacity is calculated by assuming the output rated voltage as 230 V for three-phase 230 V series and 460 V for three-phase 460 V series
(*3) Output voltage cannot exceed the power supply voltage.
*4) When setting the carrier frequency (F26) to 3 kHz or less. Use the current () or below when the carrier frequency setting is higher than 4 kHz and continuously operating at 100%.
*5) Obtained when a DC REACTOR is used.
(*6) Average braking torque obtained when reducing the speed from 60 Hz with AVR control OFF (Varies with the efficiency of the motor.)
(*7) Average braking torque obtained by use of external braking resistor (standard type available as option)
(*8) Voltage unbalance $[\%]=\frac{\text { Max voltage }[\mathrm{V}]-\text { Min voltage }[\mathrm{V}]}{\text { Three-phase average voltage }[\mathrm{V}]} \times 67$ (IEC 61800-3)
If this value is 2 to 3%, use AC REACTOR (ACR: option).
${ }^{*} 9$) The value is calculated on assumption that the inverter is connected with a power supply capacity of 500 kVA (or 10 times the inverter capacity if the inverter capacity exceeds 50 kVA) and \%X is 5%

Semi-standard type

EMC filter built-in type

■Three-phase 230V (1/8 to 20HP)

Item				Specifications										
Type (FRN $\square \square \square \mathrm{E} 1 \mathrm{E}-2 \mathrm{U}$)				F12	F25	F50	001	002	003	005	007	010	015	020
Nominal applied motor [HP] (*1)				1/8	1/4	1/2	1	2	3	5	7.5	10	15	20
	Rated capacity [kVA] (*2) Rated voltage [V] (*3)			0.30	0.57	1.1	1.9	3.0	4.1	6.4	9.5	12	17	22
				Three-phase 200 to 240 V (with AVR)										
	Rated current [A] (*4)			$\begin{gathered} \hline 0.8 \\ (0.7) \\ \hline \end{gathered}$	$\begin{gathered} 1.5 \\ (1.4) \\ \hline \end{gathered}$	$\begin{gathered} 3.0 \\ (2.5) \\ \hline \end{gathered}$	$\begin{gathered} 5.0 \\ (4.2) \\ \hline \end{gathered}$	$\begin{gathered} 8.0 \\ (7.0) \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ (16.5) \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ (23.5) \\ \hline \end{gathered}$	$\begin{gathered} 33 \\ (31) \\ \hline \end{gathered}$	$\begin{gathered} 47 \\ (44) \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ (57) \\ \hline \end{gathered}$
	Overload capability			150% of rated current for 1 min or 200% of rated current for 0.5 s										
	Rated frequency [Hz]			50, 60Hz										
	Phases, voltage, frequency			Three-phase, 200 to 240V, $50 / 60 \mathrm{~Hz}$										
	Voltage/frequency variations			Voltage: +10 to -15\% (Voltage unbalance : 2% or less (*7)) Frequency: +5 to -5%										
	Rated current [A] (*8)		(with DCR)	0.57	0.93	1.6	3.0	5.7	8.3	14.0	21.1	28.8	42.2	57.6
			(without DCR)	1.1	1.8	3.1	5.3	9.5	13.2	22.2	31.5	42.7	60.7	80
	Required power supply capacity [kVA] (*5)			0.2	0.3	0.6	1.1	2.0	2.9	4.9	7.4	10	15	20
	Torque [\%] (*6)			150		100		70	40		20			
	DC injection braking			Starting frequency: 0.0 to 60.0 Hz , Braking time: 0.0 to 30.0s, Braking level: 0 to 100\%										
	Braking transistor			Built-in										
Applicable safety standards				UL508C, C22.2No.14(pending), EN50178:1997										
Enclosure				IP20(IEC60529)/UL open type(UL50)										
Cooling method				Natural cooling ${ }^{\text {a }}$ (Fan cooling										
EMC standard compliance		Emission		Class 1A (EN55011:1998/A1:1999)							2nd Env. (EN61800-3:1996+A11:2000)			
		Immunity		2nd Env. (EN61800-3:1996/A11:2000)										
Weight / Mass [lbs(kg)]				1.5(0.7)	1.5(0.7)	1.8(0.8)	2.0(0.9)	5.3(2.4)	5.3(2.4)	6.4(2.9)	11.2(5.1)	11.7(5.3)	$22.7(10.3)$	24.9(11.3)

■Three-phase 460V (1/2 to 20HP)

Item				Specifications								
Type (FRN $\square \square \square \mathrm{E}$ 1E-4U)				F50	001	002	003	005	007	010	015	020
Nominal applied motor [HP] (*1)				1/2	1	2	3	5	7.5	10	15	20
	Rated cap	city [kVA]		1.1	1.9	2.8	4.1	6.8	9.9	13	18	22
	Rated voltage [V] (*3)			Three-phase 380 to 480V (with AVR)								
	Rated current [A] (*4)			1.5	2.5	3.7	5.5	9.0	13	18	24	30
	Overload capability			150\% of rated current for 1 min or 200\% of rated current for 0.5 s								
	Rated frequency [Hz]			50, 60Hz								
	Phases, voltage, frequency			Three-phase, 380 to $480 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$								
	Voltage/frequency variations			Voltage:+10 to -15\% (Voltage unbalance: 2\% or less (*7)), Frequency: +5 to -5%								
	Rated current [A] (*8)		(with DCR)	0.85	1.6	3.0	4.4	7.3	10.6	14.4	21.1	28.8
			(without DCR)	1.7	3.1	5.9	8.2	13.0	17.3	23.2	33.0	43.8
	Required power supply capacity [kVA] (*5)			0.6	1.1	2.0	2.9	4.9	7.4	10	15	20
	Torque [\%] (*6)			100		70	40		20			
	DC injection braking			Starting frequency: 0.0 to 60.0 Hz , Braking time: 0.0 to 30.0s, Braking level: 0 to 100\%								
	Braking transistor			Built-in								
Applicable safety standards				UL508C, C22.2No. 14 (pending), EN50178:1997								
Enclosure				IP20 (IEC60529)/UL open type (UL50)								
Cooling method				Natural cooling \quad Fan cooling								
EMC standard compliance		Emission		Class 1A (EN55011:1998/A1:1999) \quad 2nd Env. (EN61800-3:1996+A11:2000)								
		Immunity		2nd Env. (EN61800-3:1996/A11:2000)								
Weight / Mass [lbs(kg)]				3.3(1.5)	3.5(1.6)	5.5(2.5)	5.5(2.5)	6.6(3.0)	10.6(4.8)	11.0(5.0)	17.9(8.1)	20.0(9.1)

■Single-phase 230V (1/8 to 3HP)

Item				Specifications					
Type (FRN $\square \square \square \mathrm{E}$ E-7U)				F12	F25	F50	001	002	003
Nominal applied motor [HP] (*1)				1/8	1/4	1/2	1	2	3
	Rated capacity [kVA] (*2)			0.3	0.57	1.1	1.9	3.0	4.1
	Rated voltage [V] (*3)			Three-phase 200 to 240 V (with AVR)					
	Rated current [A] (*4)			$\begin{gathered} 0.8 \\ (0.7) \\ \hline \end{gathered}$	$\begin{gathered} 1.5 \\ (1.4) \\ \hline \end{gathered}$	$\begin{gathered} 3.0 \\ (2.5) \end{gathered}$	$\begin{gathered} 5.0 \\ (4.2) \\ \hline \end{gathered}$	$\begin{gathered} 8.0 \\ (7.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 11 \\ (10) \\ \hline \end{gathered}$
	Overload capability			150\% of rated current for 1 min or 200% of rated current for 0.5 s					
	Rated frequency [Hz]			$50,60 \mathrm{~Hz}$					
	Phases, voltage, frequency			Single-phase, 200 to $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$					
	Voltage/frequency variations			Voltage: +10 to -10\%, Frequency: +5 to -5\%					
	Rated current [A] (*8)		(with DCR)	1.1	2.0	3.5	6.4	11.6	17.5
			(without DCR	1.8	3.3	5.4	9.7	16.4	24.8
	Required power supply capacity [kVA] (*5)			0.3	0.4	0.7	1.3	2.4	3.5
	Torque [\%] (*6)			150		100		70	40
	DC injection braking			Starting frequency: 0.0 to 60.0 Hz , Braking time: 0.0 to 30.0 s, Braking level: 0 to 100%					
	Braking transistor			Built-in					
Applicable safety standards				UL508C, C22.2No. 14 (pending),EN50178:1997					
Enclosure				IP20 (IEC60529)/UL open type (UL50)					
Cooling method				Natural cooling				Fan cooling	
EMC standard compliance		Emission Immunity		Class 1A (EN55011:1998/A1:1999)					
		2nd Env. (EN61800-3:1996/A11:2000)							
Weight / Mass [lbs(kg)]				1.5(0.7)	1.5(0.7)	1.8(0.8)	2.9(1.3)	5.5(2.5)	6.6(3.0)

*1) Fuji's 4-pole standard motor
*2) Rated capacity is calculated by regarding the output rated voltage as 230 V for three-phase 230 V series and 460 V for three-phase 460 V series.
*3) Output voltage cannot exceed the power supply voltage.
*4) The load shall be reduced so that the continuous operating current is the rated current in parenthesis or less if the carrier frequency is set to 4 kHz or above
*5) Obtained when a DC REACTOR is used.
*6) Average braking torque when a motor of no load decelerates. (Varies with the efficiency of the motor.)
*7) Voltage unbalance $[\%]=\frac{\text { Max. voltage }[\mathrm{V}]-\text { Min. voltage }[\mathrm{V}]}{\text { Three-phase average voltage }[\mathrm{V}]} \times 67$ (IEC61800-3(5.2.3))
If this value is 2 to 3%, use an AC REACTOR.
*8) The currents are calculated on the condition that the inverters are connected to power supply of $500 \mathrm{kVA}, \% \mathrm{X}=5 \%$.

OCommon specifications

Olnverter outline (standard type)

Fig. a

Fig. c

Fig. e

Fig.b

Fig. d

Fig. f

Power supply voltage	Inverter type	Fig.	Dimensions							
			W	W1	H	H1	D	D1	D2	C
Three-phase 230V	FRNF12E1S-2U	a	3.15 (80)	2.64(67)	4.72(120)	4.33(110)	3.62(92)	3.23(82)		$4-0.20 \times 0.24(4-5 \times 6)$ (elongated hole)
	FRNF25E1S-2U								9(10)	
	FRNF50E1S-2U						4.21(107)		0.98(25)	
	FRN001E1S-2U						5.20(132)		1.97(50)	
	FRN002E1S-2U	b	4.33(110)	3.82(97)	5.12(130)	4.65(118)	5.91(150)	3.39(86)	2.52(64)	$\begin{aligned} & \hline 4-0.20 \times 0.28(4-5 \times 7 \\ & \text { (elongated hole) } \end{aligned}$
	FRN003E1S-2U									
	FRN005E1S-2U	d	5.51(140)	5.04(128)	7.09(180)	6.61(168)	5.94(151)	3.43(87)	$2.52(64)$	¢0.20 ($\phi 5$)
	FRN007E1S-2U	e	7.09(180)	6.46(164)	8.66(220)	8.07(205)	6.22(158)	3.19(81)	3.03(77)	\$0.24 (\$6)
	FRN010E1S-2U									
	FRN015E1S-2U	f	8.66(220)	7.72(196)	10.24(260)	9.37(238)	7.68(195)	3.88(98.5)	3.80(96.5)	\$0.39 (\$10)
	FRN020E1S-2U									
Three-phase 460 V	FRNF50E1S-4U	C	4.33(110)	3.82(97)	5.12(130)	4.65(118)	4.96(126)	3.39(86)	1.57(40)	$4-0.20 \times 0.24$ (4-5x6) (elongated hole)
	FRN001E1S-4U						5.91(150)		2.52(64)	
	FRN002E1S-4U	b	4.33(110)	3.82(97)	5.12(130)	4.65(118)	5.91(150)	3.39(86)	2.52(64)	$\begin{aligned} & \text { 4-0.20x0.28 (4-5x7) } \\ & \text { (elongated hole) } \end{aligned}$
	FRN003E1S-4U									
	FRN005E1S-4U	d	5.51(140)	5.04(128)	7.09(180)	6.61(168)	5.94(151)	3.43(87)	2.52(64)	¢0.20 ($¢ 5$)
	FRN007E1S-4U	e	7.09(180)	6.46(164)	8.66(220)	8.07(205)	6.22(158)	3.19(81)	3.03(77)	ф. 24 (06)
	FRN010E1S-4U									
	FRN015E1S-4U	f	8.66(220)	7.72(196)	10.24(260)	9.37(238)	7.68(195)	3.88(98.5)	3.80(96.5)	\$0.39 (\$10)
	FRN020E1S-4U									
Single-phase$230 \mathrm{~V}$	FRNF12E1S-7U	a	3.15(80)	2.64(67)	4.72(120)	4.33(110)		4.02(102)		$4-0.20 \times 0.24$ (4-5x6) (elongated hole)
	FRNF25E1S-7U						3.62(92)		0.39(10)	
	FRNF50E1S-7U						4.21(107)		0.98(25)	
	FRN001E1S-7U						5.98(152)		1.97(50)	
	FRN002E1S-7U	b	4.33(110)	3.82(97)	5.12(130)	4.65(118)	5.91(150)	3.39 (86)	2.52(64)	$\begin{array}{\|l\|l} \hline 4-0.20 \times 0.28(4-5 \times 7) \\ \text { (elongated hole) } \\ \hline \end{array}$
	FRN003E1S-7U	d	5.51(140)	5.04(128)	7.09(180)	6.61(168)	5.94(151)	3.43(87)	2.52(64)	\$0.20 (05)

OKeypad

[Unit: inch (mm)]

Dimensions of panel cutting (viewed from "A")

[^0]
Olnverter outline (EMC filter built-in type)

Fig. g

Fig. h

Fig. j

Fig. I

Power supply voltage	Inverter type	Fig.	Dimensions [Unit: inch (mm)]						
			W	H	H1	D	D1	D2	D3
Three-phase 230V	FRNF12E1S-2U	g	$\begin{aligned} & 3.15 \\ & (80) \end{aligned}$	$\begin{aligned} & 4.72 \\ & (120) \end{aligned}$	$\begin{gathered} 6.69 \\ (170) \end{gathered}$	4.41	$\begin{aligned} & 4.02 \\ & (102) \end{aligned}$	0.39	0.83
	FRNF25E1S-2U					(112)		(10)	(21.2)
	FRNF50E1S-2U					5.00(127)		0.98(25)	1.43(36.2)
	FRN001E1S-2U					5.98(152)		1.97(50)	2.41(61.2)
	FRN002E1S-2U	i	$\begin{aligned} & 5.51 \\ & (140) \\ & \hline \end{aligned}$	$\begin{gathered} 7.09 \\ (180) \end{gathered}$	$\begin{gathered} 9.65 \\ (245) \\ \hline \end{gathered}$	$\begin{array}{r} 7.64 \\ (194) \\ \hline \end{array}$	$\begin{gathered} 5.12 \\ (130) \\ \hline \end{gathered}$	$\begin{aligned} & 2.52 \\ & (64) \\ & \hline \end{aligned}$	$\begin{gathered} 3.37 \\ (85.5) \\ \hline \end{gathered}$
	FRN003E1S-2U								
	FRN005E1S-2U								
	FRN007E1S-2U	j	$\begin{gathered} 7.15 \\ (181.5) \\ \hline \end{gathered}$	$\begin{aligned} & 11.22 \\ & (285) \\ & \hline \end{aligned}$	-	$\begin{gathered} 8.39 \\ (213) \\ \hline \end{gathered}$	-	-	-
	FRN010E1S-2U								
	FRN015E1S-2U	k	$\begin{gathered} 8.66 \\ (220) \\ \hline \end{gathered}$	$\begin{aligned} & 13.78 \\ & (357) \end{aligned}$	-	$\begin{aligned} & 10.24 \\ & (260) \\ & \hline \end{aligned}$	-	-	-
	FRN020E1S-2U								
Three-phase 460V	FRNF50E1S-4U	h	$\begin{aligned} & 4.33 \\ & (110) \end{aligned}$	$\begin{gathered} \hline 5.12 \\ (130) \end{gathered}$	$\begin{aligned} & \hline 7.09 \\ & (180) \end{aligned}$	6.65(169)	$\begin{gathered} 5.08 \\ (129) \\ \hline \end{gathered}$	1.57(40)	$\begin{array}{\|l\|} \hline 2.42(61.5) \\ 3.37(85.5) \\ \hline \end{array}$
	FRN001E1S-4U					7.60(193)		2.52(64)	
	FRN002E1S-4U	i	$\begin{aligned} & 5.51 \\ & (140) \\ & \hline \end{aligned}$	$\begin{gathered} 7.09 \\ (180) \\ \hline \end{gathered}$	$\begin{gathered} 9.65 \\ (245) \end{gathered}$	$\begin{gathered} 7.64 \\ (194) \\ \hline \end{gathered}$	$\begin{gathered} 5.12 \\ (130) \end{gathered}$	$\begin{aligned} & 2.52 \\ & (64) \\ & \hline \end{aligned}$	$\begin{gathered} 3.37 \\ (85.5) \end{gathered}$
	FRN003E1S-4U								
	FRN005E1S-4U								
	FRN007E1S-4U	j	$\begin{gathered} 7.15 \\ (181.5) \\ \hline \end{gathered}$	$\begin{aligned} & 11.22 \\ & (285) \\ & \hline \end{aligned}$	-	$\begin{gathered} 8.19 \\ (208) \\ \hline \end{gathered}$	-	-	-
	FRN010E1S-4U								
	FRN015E1S-4U	I	$\begin{aligned} & 8.66 \\ & (220) \\ & \hline \end{aligned}$	$\begin{array}{r} 13.07 \\ (332) \\ \hline \end{array}$	-	$\begin{array}{r} 9.98 \\ (250) \\ \hline \end{array}$	-	-	-
	FRN020E1S-4U								
Single-phase 230V	FRNF12E1S-7U	g	$\begin{aligned} & 3.15 \\ & (80) \\ & \hline \end{aligned}$	$\begin{aligned} & 4.72 \\ & (120) \\ & \hline \end{aligned}$	$\begin{gathered} 6.69 \\ (170) \\ \hline \end{gathered}$	4.41	$\begin{aligned} & 4.02 \\ & (102) \\ & \hline \end{aligned}$	0.39	$\begin{gathered} 0.83 \\ (21.2) \end{gathered}$
	FRNF25E1S-7U					(112)		$\frac{(10)}{0.98(25)}$	
	FRNF50E1S-7U					5.00(127)			1.43(36.2)
	FRN001E1S-7U	h	4.33(110)	5.12(130)	7.09(180)	5.91(150)	4.33(110)	1.57(40)	2.17(55.2)
	FRN002E1S-7U	i	$\begin{gathered} 5.51 \\ (140) \\ \hline \end{gathered}$	$\begin{gathered} 7.09 \\ (180) \\ \hline \end{gathered}$	$\begin{gathered} 9.65 \\ (245) \\ \hline \end{gathered}$	$\begin{gathered} 7.64 \\ (194) \\ \hline \end{gathered}$	$\begin{gathered} 5.12 \\ (130) \\ \hline \end{gathered}$	$\begin{aligned} & 2.52 \\ & (64) \\ & \hline \end{aligned}$	$\begin{gathered} 3.37 \\ (85.5) \\ \hline \end{gathered}$
	FRN003E1S-7U								

$8[8$ Keypad Operations

Keypad switches and functions

LED monitor

When the motor is running or stopped:
The monitor displays speeds, such as output frequency, set frequency, motor speed and load shaft speed, output voltage, output current, and power consumption.

Alarm mode:

The monitor shows the alarm description with a fault code.

Program/Reset key

Used to change the mode.

Programming mode:

Used to shift the digit (cursor movement) to set data.

Alarm mode:

Resets trip prevention mode.

Function/Data select key

Used to change the LED monitor and to store the function code and data.

Up/Down keys

During operation: Used to increase or decrease the frequency or motor speed.
In data setting: Used to indicate the function code number or to change data set value.

Monitor display and key operation
The keypad modes are classified into the following 3 modes.

Operation mode Monitor, keys			Programming mode		Running mode		Alarm mode
			STOP	RUN	STOP	RUN	
	EA E	Function	Displays the function code and data.		Displays the output frequency, set frequency, loaded motor speed, power consumption, output current, and output voltage.		Displays the alarm description and alarm history.
		Display	Lighting		Blinking	Lighting	Blinking/Lighting
		Function	Indicates that the program mode is selected.		Displays the units of frequency, output current, power consumption, and rotation speed.		None
C		Display					OFF
	KEYPAD CONTROL	Function	Operation selection (keypad operation/terminal operation) is displayed.				
		Display	Lit in keypad operation mode				
	$\square \mathrm{RUN}$	Function	Indicates absence ofoperation commands.	Indicies presence of operation commands.	Indicates absence of operation commands.	Indicates presence of operation commands.	Indicates that the operation is tip-stopped.
		Display	\square RUN unlit	\square RUN lit	\square RUN unlit	\square RUN lit	If an alarm occurs during operation, the lamp is unlit during keypad operation and lit during terminal block operation.
$\underset{\text { ®n }}{\substack{n \\ \hline}}$		Function	Switches to running mode		Switches to programming mode		Releases the trip and
			Digit shift (cursor movement) in data setting				or running mode.
	$($ FUNC	Function	Determines the function code, stores and updates data.		Switches the LED monitor display.		Displays the operation information.
		Function	Increases/decreases the function code and data.		Increases/decreases the frequency, motor speed and other settings.		Displays the alarm history.
	RUN	Function	Invalid		Starts running (switches to running mode (RUN)).	Invalid	Invalid
	STOP	Function	Invalid	Deceleration stop (switches to programming mode (STOP)).	Invalid	Deceleration stop (switches to running mode (STOP)).	Invalid

This keypad supports the full menu mode that allows you to set or display the following information. Indication and setting change of changed function code, drive monitor, I/O check, maintenance information, and alarm information. For the actual operation methods, refer to the FRENIC-Multi Instruction Manual or User's Manual.

OWiring diagram

The following diagram is for reference only．For detailed wiring diagrams，refer to the instruction manual．
Keypad operation

Operation by external signal inputs

■Run／Stop operation and frequency setting through external signals ［Wiring procedure］
（1）Wire both the inverter main power circuit and control circuit．
（2）Set i（external signal）at function code $F G 己$ ．Next，set i（voltage input （terminal 12）（ 0 to +10 V DC）$), 己$（current input（terminal C1）（ +4 to $20 \mathrm{mADC})$ ），or other value at function code $F \square i$ ．

［Operation method］

（1）Run／Stop：Operate the inverter across terminals FDW and CM short－ circuited，and stop with open terminals．
（2）Frequency setting：Voltage input（ 0 to $+10 \mathrm{~V} D \mathrm{DC}$ ），current input（ +4 to 20mA DC）
Note1：When connecting a DC REACTOR（DCR option），remove the jumper bar from across the terminals $[\mathrm{P} 1]$ and $[\mathrm{P}(+)]$ ．
Note2：Install a recommended molded－case circuit breaker（MCCB）or a ground－fault circuit interrupter（with an overcurrent protection function）in the primary circuit of the inverter to protect wiring．At this time，ensure that the circuit breaker capacity is equivalent to or lower than the recommended capacity．
Note3：Install a magnetic contactor（MC）for each inverter to separate the inverter from the power supply，apart from the MCCB or GFCI， when necessary．
Connect a surge killer in parallel when installing a coil such as the MC or solenoid near the inverter．
Note4：（THR）function can be used by assigning code＂9＂（external alarm） to any of the terminals X1 to X5，FWD or REV（function code；E01 to E05，E98，or E99）．
Note5：Frequency can be set by connecting a frequency－setting device （external potentiometer）between the terminals 11， 12 and 13 instead of inputting a voltage signal（ 0 to +10 V DC， 0 to +5 V DC or +1 to $+5 \mathrm{~V} D$ ）between the terminals 12 and 11 ．
Note 6：For the control signal wires，use shielded or twisted wires． Ground the shielded wires．To prevent malfunction due to noise， keep the control circuit wiring away from the main circuit wiring as far as possible（recommended：3．94inch（10cm）or more）．Never install them in the same wire duct．
When crossing the control circuit wiring with the main circuit wiring， set them at right angles．

Terminal Functions

Terminal Functions

	Symbol	Terminal name	Functions	Remark	Related function code
	FM (FMA)	Analog monitor	A monitor signal of analog DC voltage between 0 to +10 V DC) can be output for the item selected from the following: - Output frequency 1 (before slip compensation) • Output frequency 2 (after slip compensation) • Output current • Output voltage • Output torque • Load factor. Power consumption • PID feedback value (PV) • DC link circuit voltage • Universal AO. • Motor output • Analog output test. • PID command (SV) • PID output (MV)	Connectable impedance (Minimum impedance: $7.5 \mathrm{HP}(5 \mathrm{~kW})$ In the (0 to +10 V DC) In case of voltage output, up to two analog voltmeters (0 to 10 V DC, input impedance: 10 kW) can be connected. Gain adjustment range: 0 to 300%	$\begin{aligned} & \text { F29 to } \\ & \text { F31 } \end{aligned}$
	(FMP)	Pulse monitor	One of the following items can be output in a pulse frequency. - Output frequency 1 (before slip compensation) • Output frequency 2 (after slip compensation) • Output current • Output voltage • Output torque • Load factor.o Power consumption • PID feedback value (PV) • DC link circuit voltage • Universal AO • Motor output • Analog output test • PID command (SV) • PID output (MV)	Up to two analog voltmeters (0 to10V DC, input impedance: $10 \mathrm{k} \Omega$) can be connected. (Driven at average voltage)	$\begin{aligned} & \text { F29, } \\ & \text { F31, } \\ & \text { F33 } \end{aligned}$
	(PLC)	Transistor output power	Power supply for a transistor output load. (24V DC 50mA DC Max)	- Short circuit across terminals CM and CMY to use - Same terminal as digital input PLC terminal	E20
	Y1	Transistor output 1	The following functions can be set at terminals Y1 or Y2 for signal output. - The setting of "short circuit upon active signal output" or "open upon active signal output" is possible. - Sink/source support (switching unnecessary)	Max. voltage: 27V DC Max. current: 50 mA Leak current: 0.1 mA max. ON voltage: within 2 V (at 50 mA)	$\begin{array}{\|l} \mathrm{E} 21 \\ \hline \text { E22 } \end{array}$
	Y2	Transistor output 2			
	(RUN)	Inverter running	An ON signal is output when the inverter runs at higher than the starting frequency.		
	(RUN2)	Inverter output on	A signal is issued when the inverter runs at smaller than the starting frequency or when DC braking is in action.		
	(FAR)	Speed/freq- arrival	An active signal is issued when the output frequency reaches the set frequency.	Detection width: 0 to $10.0[\mathrm{~Hz}]$	E30
	(FDT)	Speed/freq. detection	An ON signal is output at output frequencies above a preset detection level. The signal is deactivated if the output frequency falls below the detection level.	Operation level: 0.0 to 400.0 [Hz] Hysteresis width: 0.0 to $400.0[\mathrm{~Hz}]$	$\begin{aligned} & \text { E31 } \\ & \text { E32 } \end{aligned}$
	(LV)	Undervoltage detection	The signal is output when the inverter stops because of undervoltage.		
	(B/D)	Torque polarity detection	The OFF signal is output when the inverter is running in drive mode and the ON signal is output in the braking mode or stopped state.		
	(IOL)	Inverter output limit (limit on current)	The signal is output when the inverter is limiting the current.		F43, F44
	(IPF)	Auto-restarting	The signa is output during auto restart operation (after momentary power failure and until completion of restart).		F14
	(OL)	Overload early warning (motor)	The signal is output when the electronic thermal relay value is higher than the preset alarm level.		F10 to F12
	(RDY)	Operation ready output	A signal is issued if preparation for inverter operation is completed.		
	(SWM2)	Motor 2 switching	The motor swithing signal (M2/M1) is input and the ON signal is output when the motor 2 is selected.		
	(TRY)	Retry in action	The signal is output during an active retry.		H04, H05
	(OH)	Heat sink overheat early warning	An early warning signal is issued before the heat sink trips due to overheat.		
	(FAR2)	Frequency arrival 2	The signal is output when the time set in E29 elapses after the frequency arrival signal (FAR) is output.		E29
	(IOL2)	Inverter output limit	If more than 20 ms elapse while one of the following operations is operating: current limiter for the inverter, automatic deceleration operation or torque limiter.		$\begin{aligned} & \text { F41 to F44 } \\ & \text { H69 } \end{aligned}$
	(LIFE)	Lifetime alarm	Outputs alarm signal according to the preset lifetime level.		H42, H43, 198
	(REF OFF)	Command loss detection	A loss of the frequency command is detected.		E65
	(OLP)	Overload preventive control	The signal is output when the overload control is activated.		H70
	(ID)	Current detection	The signal is output when a current larger than the set value has been detected for the timer-set time.		E34, E35
	(ID2)	Current detection 2	The signal is output when a current larger than the set value 2 has been detected for the timer-set time.		E37, E38
	(PID-ALM)	PID alarm output	An absolute value alarm or deviation alarm under PID control is issued as a signal.		J11 to J13
	(BRKS)	Brake signal	The signal for enabling or releasing the brake is output.		J68 to J72
	(ALM)	Alarm relay output (for any fault)	An alarm relay output (for any fault) signal is issued as a transistor output signal.		
	CMY	Transistor output common	Common terminal for transistor output	The terminal is isolated from terminals 11 and CM .	
늘 흘 䓂	30A,30B,30C	Alarm relay output (for any fault)	- A no-voltage contact signal (1c) is issued when the inverter is stopped due to an alarm. - Multi-purpose relay output; signals similar to above-mentioned signals Y1 to Y2 can be selected. - An alarm output is issued upon either excitation or no excitation according to selection.	Contact capacity: 250 V AC, 0.3 A , $\cos \phi=0.3,+48 \mathrm{~V} D, 0.5 \mathrm{~A}$	E27
	-	RJ-45 connector for connection of keypad	One of the following protocols can be selected. - Protocol exclusively for keypad (default selection) - Modbus RTU - Fuji's special inverter protocol - SX protocol for PC loader	Power (+5 V) is supplied to the keypad.	H30 y01 to y20 y98,y99

Terminal Arrangement -Main circuit terminals

Power source	Applied motor [HP]	Inverter type	Fig.
Threephase 230V	1/8	FRNF12E1 \square-2U	Fig. A
	1/4	FRNF25E1 \square-2U	
	1/2	FRNF50E1 \square-2U	
	1	FRN001E1 \square-2U	
	2	FRN002E1 \square-2U	Fig. B
	3	FRN003E1 \square-2U	
	5	FRN005E1 \square-2U	
	7.5	FRN007E1 \square-2U	Fig. C
	10	FRN010E1 \square-2U	
	15	FRN015E1 \square-2U	
	20	FRN020E1 \square-2U	
Threephase 460V	1/2	FRNF50E1 \square-4U	Fig. B
	1	FRN001E1 \square-4U	
	2	FRN002E1 \square-4U	
	3	FRN003E1 \square-4U	
	5	FRN005E1 \square-4U	
	7.5	FRN007E1 \square-4U	Fig. C
	10	FRN010E1 \square-4U	
	15	FRN015E1 \square-4U	
	20	FRN020E1 \square-4U	
Singlephase 230 V	1/8	FRNF12E1 \square-7U	Fig. D
	1/4	FRNF25E1 \square-7U	
	1/2	FRNF50E1 \square-7U	
	1	FRN001E1 \square-7U	
	2	FRN002E1 \square-7U	Fig. E
	3	FRN003E1 \square-7U	

The code in \square represents followings;
S: standard model, E: EMC filter built-in type

Fig. A

Fig. B

Fig. C

Fig. D

Fig. E

-Control circuit terminals (common to all the inverter models)

| CMY | Y1 | Y2 | C1 | 11 | FM | CM | X1 | X2 | X3 | X4 | X5 | PLC |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note: The item indicated with Δ in the alarm output (30A, B, C) column may not be issued according to some function code settings.

Function Settings

Function Settings
F codes: Fundamental Functions

Func. Code	Name	Data setting range	Min.	Unit	$\begin{gathered} \text { Data } \\ \text { copy }^{* 2} \\ \hline \end{gathered}$	Default setting
F00	Data Protection	0: Disable both data protection and digital reference protection 1: Enable data protection and disable digital reference protection 2: Disable data protection and enable digital reference protection 3: Enable both data protection and digital reference protection	-	-	Y	0
FOi	Frequency Command 1	$0: ⿴ 囗 /$ keys on keypad 1: Voltage input to terminal [12] (-10 to +10 VDC $)$ 2: Current input to terminal [C1] (C1 function) (4 to 20 mADC) 3: Sum of voltage and current inputs to terminals [12] and [C1] (C1 function) 5: Voltage input to terminal [C1] (V2 function) (0 to 10 VDC) 7: Terminal command UP /DOWN control 11: Digital input (option) 12: Pulse input (option)	-	-	Y	0
$F 02$	Operation Method	0: RUN/STOP keys on keypad (Motor rotational direction specified by terminal command FWD/REV) 1: Terminal command FWD or REV 2: RUN/STOP keys on keypad (forward) 3: RUN/STOP keys on keypad (reverse)	-	-	Y	2
F03	Maximum Frequency 1	25.0 to 400.0	0.1	Hz	Y	60.0
F04	Base Frequency 1	25.0 to 400.0	0.1	Hz	Y	60.0
F05	Rated Voltage at Base Frequency 1	0 : Output a voltage in proportion to input voltage 80 to 240: Output an AVR-controlled voltage (for 230 V class series) 160 to 500: Output an AVR-controlled voltage (for 460 V class series)	1	V	Y2	$\begin{aligned} & 230 \\ & 460 \\ & \hline \end{aligned}$
$F 05$	Maximum Output Voltage 1	80 to 240: Output an AVR-controlled voltage (for 230 V class series) 160 to 500: Output an AVR-controlled voltage (for 460 V class series)	1	V	Y2	$\begin{aligned} & 230 \\ & 460 \\ & \hline \end{aligned}$
FR7	Acceleration Time 1	0.00 to 3600 Note: Entering 0.00 cancels the acceleration time, requiring external soft-start.	0.01	s	Y	6.00
F88	Deceleration Time 1	0.00 to 3600 Note: Entering 0.00 cancels the deceleration time, requiring external soft-start.	0.01	s	Y	6.00
F09	Torque Boost 1	0.0 to 20.0 (percentage with respect to "F05: Rated Voltage at Base Frequency 1") Note: This setting takes effect when $\mathrm{F} 37=0,1,3$, or 4 .	0.1	\%	Y	Depending on the inverter capacity
F 10	Electronic Thermal Overload Protection for Motor 1 (Select motor characteristics)	1: For a general-purpose motor with shaft-driven cooling fan 2: For an inverter-driven motor, non-ventilated motor, or motor with separately powered cooling fan	-	-	Y	1
Fii	(Overload detection level)	0.00: Disable1 to 135\% of the rated current (allowable continuous drive current) of the motor	0.01	A	Y1Y2	10\%\%ofthe motor reted areent
Fiz	(Thermal time constant)	0.5 to 75.0	0.1	min	Y	5.0
F 14	Restart Mode (Mode selection) after Momentary Power Failure	0: Disable restart (Trip immediately) 1: Disable restart (Trip after a recovery from power failure) 4: Enable restart (Restart at the frequency at which the power failure occurred, for general loads) 5: Enable restart (Restart at the starting frequency, for low-inertia load)	-	-	Y	0
Fis	Frequency Limiter (High)	0.0 to 400.0	0.1	Hz	Y	70.0
Fis	(Low)	0.0 to 400.0	0.1	Hz	Y	0.0
F i	Bias (Frequency command 1)	-100.00 to $100.00 * 1$	0.01	\%	Y	0.00
F20	DC (Braking starting frequency)	0.0 to 60.0	0.1	Hz	Y	0.0
FE:	Braking 1 (Braking level)	0 to 100	1	\%	Y	0
F2e	(Braking time)	0.00 : Disable 0.01 to 30.00	0.01	s	Y	0.00
F23	Starting Frequency 1	0.1 to 60.0	0.1	Hz	Y	0.5
F24	(Holding time)	0.01 to 10.00	0.01	s	Y	0.00
F25	Stop Frequency	0.1 to 60.0	0.1	Hz	Y	0.2
F25	Motor Sound (Carrier frequency)	0.75 to 15	1	kHz	Y	2
$F 27$	(Tone)	$\begin{aligned} & 0 \text { : Level } 0 \text { (Inactive) } \\ & 1 \text { : Level } 1 \\ & 2 \text { : Level } 2 \\ & 3 \text { : Level } 3 \end{aligned}$	-	-	Y	0
F39	Analog Output [FM] (Mode selection)	0 : Output in voltage (0 to 10 VDC) [FMA] 2 : Output in pulse (0 to $6000 \mathrm{p} / \mathrm{s}$) [FMP]	-	-	Y	0
F30	(Voltage adjustment)	0 to 300 [FMA]	1	\%	Y	100
F3i	(Function)	Select a function to be monitored from the followings. 0 : Output frequency 1 (before slip compensation) 1: Output frequency 2 (after slip compensation) 2: Output current 3: Output voltage 4: Output torque 5: Load factor 6: Input power 7: PID feedback amount (PV) 8: PG feedback value 9: DC link bus voltage 10: Universal AO 13: Motor output 14: Calibration 15: PID command (SV) 16: PID output (MV)	-	-	Y	0
$F 33$	(Pulse rate)	25 to 6000 (FMP, Pulse rate at 100\% output)	1	p/s	Y	1440
F37	Load Selection/ Auto Torque Boost / Auto Energy Saving Operation 1	0 : Variable torque load 1: Constant torque load 2: Auto-torque boost 3: Auto-energy saving operation (Variable torque load during ACC/DEC) 4: Auto-energy saving operation (Constant torque load during ACC/DEC) 5: Auto-energy saving operation (Auto-torque boost during ACC/DEC)	-	-	Y	1
F39	Stop Frequency (Holding Time)	0.00 to 10.00	0.01	s	Y	0.00
$F 40$	Torque (Limiting Level for driving)	20 to 200999 : Disable	1	\%	Y	999
F4i	Limiter 1 (Limiting Level for braking)	20 to 200999 : Disable	1	\%	Y	999
F42	Control Mode Selection 1	0: V/f control with slip compensation inactive 1: Dynamic torque vector control 2: V/f control with slip compensation active 3: V/f control with PG 4: Dynamic torque vector control with PG	-	-	Y	0

F codes: Fundamental Functions

Func. Code	Name	Data setting range	Min.	Unit	$\begin{gathered} \text { Data } \\ \text { copy }^{* 2} \\ \hline \end{gathered}$	Default setting
F43	Current Limiter (Mode selection)	0: Disable (No current limiter works.) 1: Enable at constant speed (Disable during ACC/DEC) 2: Enable during ACC/constant speed operation	-	-	Y	2
$F 44$	(Level)	20 to 200 (The data is interpreted as the rated output current of the inverter for 100%.)	1	\%	Y	180
F50	Electronic Thermal (Discharging capability) Overload Protection for braking resistor (Allowable average loss)	1 to 900 999: Disable 0 : Reserved 0.001 to $50.0000 .000:$ Reserved	1	kWs	Y	999
FS i			0.001	kW	Y	0.000

E codes: Extension Terminal Functions

*1 When you make settings from the keypad, the incremental unit is restricted by the number of digits that the LED monitor can display.
(Example) If the setting range is from -200.00 to 200.00, the incremental unit is as follows:
"1" for -200 to -100, " 0.1 " for -99.9 to $-10.0, ~ " 0.01 "$ for -9.99 to $-0.01, ~ " 0.01 "$ for 0.00 to 99.99 , and " 0.1 " for 100.0 to 200.0
*2 Symbols in the "Data copy" column
Y: Will be copied unconditionally.
Y1: Will not be copied if the rated capacity differs from the source inverter.

Y2: Will not be copied if the rated input voltage differs from the source inverter. N : Will not be copied
*3 Reserved for the maker. Do not set any data.
<Changing, validating, and saving function code data when the motor is running> : Impossible, \square : Possible (Change data with keys and then save/validate it with -key), \square : Possible (Change and validate data with \triangle keys and then save it with () key)

Functions Settings

Functions Settings

E codes: Extension Terminal Functions

E codes: Extension Terminal Functions

Func. Code	Name	Data setting range	Min.	Unit	Data copy*2	Default setting
		$42(1042)$: Position control limit switch [LS] $43(1043)$: Position control start/reset command [S/R] $44(1044)$: Serial pulse Receive mode [SPRM] $45(1045)$: Position Control return mode [RTN] $46(1046)$: Overload stopping effective command [OLS] 98 : Run forward [FWD] 99 : Run reverse [REV] Setting the value of 1000s in parentheses () shown above assigns a negative logic input to a terminal. Note: In the case of THR and STOP , data (1009) and (1030) are for normal logic, and " 9 " and " 30 " are for negative logic, respectively.				

C codes: Control Functions

Func. Code	Name	Data setting range	Min.	Unit	Data copy*2	Default setting
[CB	Jump Frequency 1 2 3 (Hysteresis width)	0.0 to 400.0	0.1	Hz	Y	0.00
[02					Y	0.00
$[03$					Y	0.00
[04		0.0 to 30.0	0.1	Hz	Y	3.0
C05		0.00 to 400.00	0.01	Hz	Y	0.00
[06					Y	0.00
[07					Y	0.00
$\underline{508}$					Y	0.00
[09					Y	0.00
[10					Y	0.00
[11					Y	0.00
[ic					Y	0.00
[13					Y	0.00
[14					Y	0.00
[15					Y	0.00
[15					Y	0.00
[17					Y	0.00
[18					Y	0.00
[19					Y	0.00
[20	Jogging Frequency	0.00 to 400.00	0.01	Hz	Y	0.00
[21	Timer Operation	$\begin{aligned} & 0 \text { : Disable } \\ & 1 \text { : Enable } \\ & \hline \end{aligned}$	-	-	Y	0
[30	Frequency Command 2	0: / keys on keypad 1: Voltage input to terminal [12] (-10 to $+10 \mathrm{VDC})$ 2: Current input to terminal [C1] (C1 function) (4 to 20 mADC) 3: Sum of voltage and current inputs to terminals [12] and [C1] (C1 function) 5: Voltage input to terminal [C1] (V2 function) (0 to 10 VDC) 7: Terminal command UP / DOWN control 11: Didital input (option) 12: Pulse input (option)	-	${ }^{-}$	Y	2
[31	Analog Input Adjustment (offset)	-5.0 to 5.0	0.1	\%	Y	0.0
[32	for [12] (Gain)	0.00 to 200.00 *1	0.01	\%	Y	100.0
$[33$	(Filter time constant)	0.00 to 5.00	0.01	s	Y	0.05
[34	(Gain base point)	0.00 to 100.00 *	0.01	\%	Y	100.0
[35	(Polarity)	0 : Bipolar 1 : Unipolar	-	-	Y	1
$[36$	Analog Input Adjustment (offset)	-5.0 to 5.0	0.1	\%	Y	0.0
[37	for [C1] (C1 function) (Gain)	0.00 to 200.00 *1	0.01	\%	Y	100.0
[38	(Filter time constant)	0.00 to 5.00	0.01	s	Y	0.05
[39	(Gain base point)	0.00 to 100.00 *	0.01	\%	Y	100.0
[4i	Analog Input Adjustment (offset)	-5.0 to 5.0	0.1	\%	Y	0.0
[42	for [C1] (V2 function) (Gain)	0.00 to 200.00 *	0.01	\%	Y	100.0
$[43$	(Filter time constant)	0.00 to 5.00	0.01	s	Y	0.05
[44	(Gain base point)	0.00 to 100.00 *	0.01	\%	Y	100.0
[50]	Bias (Frequency command 1) (Bias base point)	0.00 to 100.00 *	0.01	\%	Y	0.00
[5]	Bias (PID command 1) (Bias value)	-100.00 to $100.00 * 1$	0.01	\%	Y	0.00
[52	(Bias base point)	0.00 to 100.00 *	0.01	\%	Y	0.00
[53	Selection of Nommalliverse Operation (Frequency command 1)	0 : Normal operation 1 : Inverse operation	-	-	Y	0

*1 When you make settings from the keypad, the incremental unit is restricted by the number of digits that the LED monitor can display.
(Example) If the setting range is from -200.00 to 200.00, the incremental unit is as follows: "1" for -200 to -100, " 0.1 " for -99.9 to $-10.0, ~ " 0.01 "$ for -9.99 to -0.01 , " 0.01 " for 0.00 to 99.99 , and " 0.1 " for 100.0 to 200.0
*2 Symbols in the "Data copy" column
Y: Will be copied unconditionally.
Y1: Will not be copied if the rated capacity differs from the source inverter.
Y2: Will not be copied if the rated input voltage differs from the source inverter.
N : Will not be copied.
*3 Reserved for the maker. Do not set any data.
*4 Use these functions by connection with the multi-tasking keypad (optional). <Changing, validating, and saving function code data when the motor is running> \square : Impossible, \square : Possible (Change data with \checkmark keys and then save/validate it with key), \square : Possible (Change and validate data with \bigcirc) keys and then save it with (ing)

Functions Settings

Functions Settings

codes: Motor Parameters

Func. Code	Name	Data setting range	Min.	Unit	Data copy*2	Default setting
PD i	Motor $1 \quad \begin{array}{r}\text { (No. of poles) } \\ \text { (Rated capacity) } \\ \\ \end{array}$	2 to 22	2	Pole	Y1Y2	4
PO2		0.01 to 30.00 (where, P99 data is 0,3, or 4.)	0.01	kW	Y1Y2	Rated capacity of motor
		0.01 to 30.00 (where, P99 data is 1.)	0.01	HP		
903		0.00 to 100.0	0.01	A	Y1Y2	Ratedualue of fly isaradad moor
904		0: Disable 1: Enable (Tune \%R1 and \%X while the motor is stopped.) 2: Enable (Tune \%R1, \%X and rated slip while the motor is stopped, and no-load current while running.)	-	-	N	0
P05	(Online tuning)	0 : Disable 1 : Enable	-	-	Y	0
P05	(No-load current)	0.00 to 50.00	0.01	A	Y1Y2	Ratevalue of fuy istandadmor
PO7	(\%R1)	0.00 to 50.00	0.01	\%	Y1Y2	
P08	(\%X)	0.00 to 50.00	0.01	\%	Y1Y2	
P09	(Slip compensation gain for driving)	0.0 to 200.0	0.01	\%	Y	100.0
P 10	(Slip compensation response time)	0.00 to 10.00	0.01	s	Y1Y2	0.50
Pil	(Slip compensation gain for braking)	0.0 to 200.0	0.01	\%	Y	100.0
Piz	(Rated slip frequency)	0.00 to 15.00	0.01	Hz	Y1Y2	
999	Motor 1 Selection	0: Motor characteristics 0 (Fuji standard motors, 8 -series) 1: Motor characteristics 1 (HP rating motors) 3: Motor characteristics 3 (Fuji standard motors, 6 -series) 4: Other motors	-	-	Y1Y2	0

OH codes: High Performance Functions

Func Code	Name	Data setting range	Min.	Unit	Data copy*2	Default setting
403	Data Initialization	0: Disable initialization : Initialize all function code data to the factory defaults 2: Initialize motor 1 parameters 3: Initialize motor 2 parameters	-	-	N	0
H04	Auto-reset (Times)	0 : Disable 1 to 10	1	Times	Y	0
H05	(Reset interval)	0.5 to 20.0	0.1	s	Y	5.0
H05	Cooling Fan ON/OFF Control	0 : Disable (Always in operation) 1: Enable (ON/OFF controllable)	-	-	Y	0
407	Acceleration/Deceleration Pattern	0: Linear 1: S-curve (Weak) 2: S-curve (Strong) 3: Curvilinear	-	-	Y	0
408	Limiting the direction of the motor rotation	0: Disable 1: Enable (Reverse rotation inhibited) 2: Enable (Forward rotation inhibited)	-	-	Y	0
409	Starting Mode (Auto search)	0: Disable 1: Enable (At restart after momentary power failure) 2: Enable (At restart after momentary power failure and at normal start)	-	-	Y	0
Hil	Deceleration Mode	0: Normal deceleration 1: Coast-to-stop	-	-	Y	0
4 H	Instantaneous Overcurrent Limiting (Mode selection)	0 : Disable 1 : Enable	-	-	Y	1
Hi3	RestartMode ater Momentay Power Failure (Restart time)	0.1 to 10.0	0.1	s	Y1Y2	Depeningonothe inverte capaity
H:4	(Frequency fall rate)	0.00 : FSelected deceleration time 0.01 to 100.00 999: Follow the current limit command	0.01	Hz/s	Y	999
His	(Allowable momentary power failure time)	0.0 to 30.0999 : Automatically determined by inverter	0.1	s	Y	999
НСб	Thermistor (Mode selection)	0 : Disable 1: Enable (With PTC, the inverter immediately trips with 044 displayed.) 0.00 to 5.00 V 2: Enable (With PTC, the inverter issues output signal THM and continues to run.	-	-	Y	0
H27	(Level)	0.00 to 5.00	0.01	V	Y	1.60
H28	Droop control	-60.0 to 0.0	0.1	Hz	Y	0.0
430	Communications Link Function (Mode selection)	Frequency command Run command 0: $\mathrm{F01/C30}$ F02 1: RS-485 F02 2: $\mathrm{F01/C30}$ RS-485 3: RS-485 RS-485 4: RS-485 (option) F02 5: RS-485 (option) RS-485 6: F01/C30 RS-485 (option) 7: RS-485 RS-485 (option) 8: RS-485 (option) RS-485 (option)	-	-	Y	0
Н42	Capacitance of DC Link Bus Capacitor	Indication for replacing DC link bus capacitor (0000 to FFFF: Hexadecimal)	1	-	N	-
443	Cumulative Run Time of Cooling Fan	Indication of cumulative run time of cooling fan for replacement	-	-	N	-
Н44	Startup Times of Motor 1	Indication of cumulative startup times	-	-	N	-
H45	Mock Alarm	0: Disable 1: Enable (Once a mock alarm occurs, the data automatically returns to 0.)	-	-	N	0
H47	Initial Capacitance of DC Link Bus Capacitor	Indication for replacing DC link bus capacitor (0000 to FFFF: Hexadecimal)	-	-	N	Set at factory shipping
H48	Cumulaive Run Time of Capaitios on Pinted Circiit Baads	Indication for replacing capacitors on printed circuit boards (0000 to FFFF: Hexadecimal). Resettable.	-	-	N	-
449	Starting Mode (Delay time)	0.0 to 10.0	0.1	S	Y	0.0
H50	Non-linear V/f Pattern,1 (Frequency)	0.0 : Cancel 0.1 to 400.0	0.1	Hz	Y	0.0
H5 i	(Voltage)	0 to 240 : Output an AVR-controlled voltage (for 230 V class series) 0 to 500 : Output an AVR-controlled voltage (for 460 V class series)	1	V	Y2	0
H52	Non-linear V/f Pattern,2 (Frequency)	0.0 : Cancel 0.1 to 400.0	0.1	Hz	Y	0.0
H53	(Voltage)	0 to 240: Output an AVR-controlled voltage (for 230 V class series) 0 to 500: Output an AVR-controlled voltage (for 460 V class series)	1	V	Y2	0
H54	ACC/DEC time (Jogging operation)	0.00 to 3600 *ACC time and DEC time are common.	0.01	s	Y	6.00
H55	Deceleration Time for Forced Stop	0.00 to 3600	0.01	S	Y	6.00

OH codes: High Performance Functions

Func. Code	Name	Data setting range					Min.	Unit	Data copy*2	Default setting
H6 i	UP/DOWN Control (Initial frequency setting)	$0: 0.00$ 1 : Last UP /DOWN command value on releasing run command					-	-	Y	1
453	Low Limiter (Mode selection)	0 : Limit by F16 (Frequency limiter: Low) and continue to run 1 : If the output frequency lowers less than the one limited by F16 (Frequency liniter: Low), decelerate to stop the motor.					-	-	Y	0
464	(Lower limiting frequency)	0.0 (Depends on F16 (Frequency limiter: Low))					0.1	Hz	Y	1.6
468	Slip Compensation 1 (Operating conditions)	0 : Enable during ACC/DEC and enable at base frequency or above 1 : Disable during ACC/DEC and enable at base frequency or above 2 : Enable during ACC/DEC and disable at base frequency or above 3 : Disable during ACC/DEC and disable at base frequency or above					-	-	Y	0
459	Automatic Deceleration (Mode selection)	0 : Disable 2 : Enable (Canceled if actual deceleration time exceeds three times the one specified by F08/E11.) 4 : Enable (Not canceled if actual deceleration time exceeds three times the one specified by F08/E11.)					-	-	Y	0
470	Overload Prevention Control	0.00 : Follow deceleration time specified by F08/E11 0.01 to 100.0 999: Disable					0.01	Hz/s	Y	999
H7	Deceleration Characteristics	0 : Disable 1 : Enable					-	-	Y	0
176	Torque Limiter (Frequency increment limit for braking)	0.0 to 400.0					0.1	Hz	Y	5.0
480	Output Curent Fluctuation Damming Gain for Motor 1	0.00 to 0.40					0.01	-	Y	0.20
$\begin{gathered} 489 \\ 1 \\ 490 \\ \hline \end{gathered}$	Reserved. *3									
H9	C1 Disconnection Detection Time (PID control feedback line)	0.0: Disable0.1 to 60.0: Detection time					-	-		0.0
H94	Cumulative Motor Run Time 1	Change or reset the cumulative data					-	-	N	-
495	DC Braking (Braking response mode)	$\begin{aligned} & 0 \text { : Slow } \\ & 1 \text { : Quick } \end{aligned}$					-	-	Y	1
496	STOP Key Priority/ Start Check Function	Item Data	0	1	2	3	-	-	Y	0
		STOP key priority	Disable	Enable	Disable	Enable				
		Start check function	Disable	Disable	Enable	Enable				
497	Clear Alarm Data	Setting H97 data to "1" clears alarm data and then returns to zero.					-	-	N	0
498	Protection/Maintenance Function (Mode selection)	0 to 31: Display data on the keypad"s LED monitor in decimal format (In each bit, "0" for disabled, "1" for enabled.) Bit 0 : Lower the carrier frequency automatically Bit 1 : Detect input phase loss Bit 2 : Detect output phase loss Bit 3 : Select life judgment threshold of DC link bus capacitor Bit 4 : Judge the life of DC link bus capacitor					-	-	Y	$\begin{gathered} 19 \\ \text { (bit } 4,1,0=1 \text {) } \end{gathered}$

-A codes: Motor 2 Parameters

Func. Code	Name	Data setting range	Min.	Unit	Data copy	Default setting

*1 When you make settings from the keypad, the incremental unit is restricted by the number of digits that the LED monitor can display.
(Example) If the setting range is from -200.00 to 200.00 , the incremental unit is as follows: "1" for -200 to -100, " 0.1 " for -99.9 to $-10.0, ~ " 0.01$ " for -9.99 to $-0.01, ~ " 0.01$ " for 0.00 to 99.99 , and " 0.1 " for 100.0 to 200.0
*2 Symbols in the "Data copy" column
Y: Will be copied unconditionally.
Y1: Will not be copied if the rated capacity differs from the source inverter.
Y2: Will not be copied if the rated input voltage differs from the source inverter. N : Will not be copied.
*3 Reserved for the maker. Do not set any data.
<Changing, validating, and saving function code data when the motor is running> \square : Impossible, \square : Possible (Change data with keys and then save/validate it with key), \square : Possible (Change and validate data with keys and then save it with (i) key)

Functions Settings

Functions Settings

A codes: Motor 2 Parameters

Func. Code	Name	Data setting range	Min.	Unit	Data copy*2	Default setting
7 15	Motor $2 \quad \begin{array}{rr}\text { (No. of poles) } \\ \text { (Rated capacity) }\end{array}$	2 to 22	2	Pole	Y1Y2	4
815		0.01 to 30.00 (where, P99 data is 0,3 , or 4 .)	0.01	kW	Y1Y2	4
		0.01 to 30.00 (where, P99 data is 1.)	0.01	HP		
817		0.00 to 100.0	0.01	A	Y1Y2	Rated value offyj standard moior
818		0 : Disable 1 : Enable (Tune \%R1 and \%X while the motor is stopped.) 2 : Enable (Tune \%R1, \%X and rated slip while the motor is stopped, and no-load current while running.)	-	-	N	0
819	(ON-Line tuning)	0 : Disable 1 : Enable	-	-	Y	0
820	(No-load current)	0.00 to 50.00	0.01	A	Y1Y2	Rated vilue offyis standardmor
R2 1	(\%R1)	0.00 to 50.00	0.01	\%	Y1Y2	Raied vilue offyis sandard motor
R22	(\%X)	0.00 to 50.00	0.01	\%	Y1Y2	Ratev vilue oflyis sandard moior
823	(Slip compensation gain for driving)	0.0 to 200.0	0.01	\%	Y	100.0
823	(Slip compensation response time)	0.00 to 10.00	0.01	s	Y1Y2	0.50
825	(Slip compensation gain for braking)	0.0 to 10.00	0.01	\%	Y	100.0
825	(Rated slip frequency)	0.00 to 15.00	0.01	Hz	Y1Y2	Rated valu offylistandard moior
839	Motor 2 Selection	0 : Motor characteristics 0 (Fuji standard motors, 8-series) 1 : Motor characteristics 1 (HP rating motors) 3 : Motor characteristics 3 (Fuji standard motors, 6-series) 4 : Other motors	-	-	Y1Y2	0
840	Slip compensation 2 (Operating conditions)	0 : Enable during ACC/DEC and enable at base frequency or above 1 : Disable during ACC/DEC and enable at base frequency or above 2 : Enable during ACC/DEC and disable at base frequency or above 3 : Disable during ACC/DEC and disable at base frequency or above	-	-	Y	0
841	Output Curent Fluctuation Damping Gain for Motor2	0.00 to 0.40	0.01	-	Y	0.20
845	Cumulative Motor Run Time 2	Change or reset the cumulative data	-	-	N	-
845	Startup Times of Motor 2	Indication of cumulative startup times	-	-	N	-

OJ codes: Application Functions

Func. Code	Name	Data setting range	Min.	Unit	Data copy* ${ }^{2}$	Default setting
U'I	(Remote command SV)	0 : Disable 1 : Enable (Process control, normal operation) 2 : Enable (Process control, inverse operation) 3 : Enable (Dancer control)	-	-	Y	0
402		0 : UP/DOWN keys on keypad 1 : PID command 1 3 : Terminal command UP /DOWN control 4 : Command via communications link	-	-	Y	0
403	P (Gain) I (Integral time) D (Differential time) (Feedback filter)	0.000 to 30.000 * 1	0.001	Times	Y	0.100
404		0.0 to 3600.0 *	0.1	s	Y	0.0
405		0.0 to 600.00 *	0.01	s	Y	0.00
405		0.0 to 900.0	0.1	s	Y	0.5
4iO	PID Control $\begin{gathered}\text { (Anti reset windup) } \\ \text { (Select alarm output) }\end{gathered}$	0 to 200	1	\%	Y	200
Uil		0 : Absolute-value alarm 1 : Absolute-value alarm (with Hold) 2 : Absolute-value alarm (with Latch) 3 : Absolute-value alarm (with Hold and Latch) 4 : Deviation alarm 5 : Deviation alarm (with Hold) 6 : Deviation alarm (with Latch) 7 : Deviation alarm (with Hold and Latch)	-	-	Y	0
Liz	(Upper level alarm (AH)) (Lower level alarm (AL))	-100 to 100	1	\%	Y	100
L13		-100 to 100	1	\%	Y	0
4i8	(Upper limit of PID process output) (Lower limit of PID process output)	-150 to 150999 : F Disable	1	\%	Y	999
4 Lig		-150 to 150999 : F Disable	1	\%	Y	999
4 U56	(Speed command filter) (Dancer reference position)	0.00 to 5.00	0.01	s	Y	0.10
457		-100 to 100	1	\%	Y	0
U'58	(Detection width of Dancer position deviation)	0 : Disable switching PID constant 1 to 100	1	\%	Y	0
453	$P(\text { gain }) 2$	0.000 to 30.00 *	0.001	times	Y	0.100
450		0.0 to 3600.0 *	0.1	s	Y	0.0
U'5	1 (Integration time) 2 D (Derivative time) 2	0.00 to 600.00 *	0.01	s	Y	0.00
U62	(Selection PID control block) (PID control block Selection)	Bit 0 : PID output pole $0=$ addition, $1=$ subtraction Bit 1 : Select compensation of output ratio $0=$ speed command, $1=$ ratio	1	-	Y	0
463	$\begin{array}{rr}\text { Overload stop } & \text { (Detection value) } \\ \text { (Detection level) }\end{array}$	0 : Torque 1: Current	-	-	Y	0
454		20 to 200	0.1	\%	Y	100
U65	(Mode selection)	0 : Disable 1 : Decelerate to stop 2 : Coast to a stop 3 : Hit mechanical stop	-	-	Y	0
U56	(Operation condition)(Timer)	0 : Enable at constant speed and during deceleration 1 : Enable at constant speed 2 : Enable anytime	-	-	Y	0
457		0.00 to 600.00	0.01	s	Y	0
458	Braking signal (Released current) (Brake OFF frequency) (Brake OFF timer) (Brake ON frequency) (Brake ON timer)	0 to 200	1	\%	Y	100
469		0.0 to 25.0	0.1	Hz	Y	1.0
470		0.0 to 5.0	0.1	s	Y	1.0
471		0.0 to 25.0	0.1	Hz	Y	1.0
472		0.0 to 5.0	0.1	s	Y	1.0

J codes: Application Functions

Func. Code	Name		Data setting range	Min.	Unit	Data copy* ${ }^{2}$	Default setting
473	Position control (the start timer)	0.0 to 1000.0		0.1	s	Y	0.0
474	(Start point: MSD)	-999 to 999		1	p	Y	0
4	(Start point: LSD)	[P], 0 to 9999		1	p	Y	0
476	(Position preset: MSD)	-999 to 999		1	p	Y	0
477	(Position preset: LSD)	[P], 0 to 9999		1	p	Y	0
478	(Creep speed switch point: MSD)	0 to 999		1	p	Y	0
479	(Creep speed switch point: LSD)	0 to 9999		1	p	Y	0
180	(Creep speed)	0 to 400		1	Hz	Y	0
U8 i	(Stopping position: MSD)	-999 to 999		1	p	Y	0
48	(Stopping position: LSD)	0 to 9999		1	p	Y	0
483	(Completion width)	0 to 9999		1	p	Y	0
484	(End timer)	0.0 to 1000.0		0.1	s	Y	0.0
485	(Coasting compensation)	0 to 9999		1	p	Y	0
485	(Stopping position specifying method)	0,1		-	-	Y	0
487	(Position pre-set condition)	0, 1, 2		-	-	Y	0
U88	(Position detecting direction)	0,1		-	-	Y	0
U90	Overload stopping, torque limit P (Gain)	0.000 to 2.000, 999		0.001	-	Y	999
491	Function, torque limit I (Integral time)	0.001 to 9.999, 999		0.001	\%	Y	999
+92	Current control level	50.0 to 150.0		0.1	\%	Y	100.0

Oy codes: Link Functions

*1 When you make settings from the keypad, the incremental unit is restricted by the number of digits that the LED monitor can display.
(Example) If the setting range is from -200.00 to 200.00, the incremental unit is as follows:
"1" for -200 to -100, " 0.1 " for -99.9 to $-10.0, ~ " 0.01$ " for -9.99 to -0.01 , " 0.01 " for 0.00 to 99.99 , and " 0.1 " for 100.0 to 200.0
*2 Symbols in the "Data copy" column
Y: Will be copied unconditionally.
Y1: Will not be copied if the rated capacity differs from the source inverter.

Y2: Will not be copied if the rated input voltage differs from the source inverter N : Will not be copied.
*3 Reserved for the maker. Do not set any data
<Changing, validating, and saving function code data when the motor is running> \square Impossible, \square : Possible (Change data with Δ keys and then \square : Impossible, \square : Possible (Change data with \triangle keys and then save/validate it with $=$ key), \square :
keys and then save it with -key)

Functions Settings

Functions Settings

o codes: Link Functions

Func. Code	Name	Data setting range	Min.	Unit	$\begin{gathered} \text { Data } \\ \text { copy }^{* 2} \\ \hline \end{gathered}$	Default setting
ODI	Commandfeedback input (Input form selection)	0, 1, 2, 10, 11, 12, 20, 21, 22	1	-	Y	0
002	Speed control (P item)	0.01 to 200.00	0.01	-	Y	10.00
003	(1 item)	0.000 to 5.000	0.001	s	Y	0.100
0.84	(Filter time constant)	0.000 to 5.000	0.001	s	Y	0.020
0.05	(Pulse line input) (Encode pulse number)	20 to 3600	1	-	Y	1024
006	(Filter time constant)	0.000 to 5.000	0.001	s	Y	0.005
007	(Pulse compensation coefficient 1)	1 to 9999	1	-	Y	1
008	(Pulse compensation coefficient 2)	1 to 9999	1	-	Y	1
0.89	Feedback(Feedback input) (Encoder pulse number)	20 to 3600	1	-	Y	1024
010	(Filter time constant)	0.000 to 5.000	0.001	s	Y	0.005
011	(Pulse compensation coefficient 1)	1 to 9999	1	-	Y	1
012	(Pulse compensation coefficient 2)	1 to 9999	1	-	Y	1
013	Speed control (Output limiter)	0.00 to 100.00	0.01	\%	Y	100.00
0.44	Reserved *3	0.1	1	-	Y	0
015	Reserved *3	0.1	1	-	Y	0
-15	Reserved *3	0 to 255	1	-	Y	0
017	Excessive speed deviation (Level)	0 to 50	1	\%	Y	10
018	(Timer)	0.0 to 10.0	0.1	s	Y	0.5
019	PG abnormal error selection	0, 1, 2	1	-	Y	2
020	DIO option (DI mode selection)	0: 8 bit binary setting 1: 12 bit binary setting 4: BCD 3-digit setting 0 to 99.9 5: BCD 3-digit setting 0 to 999	-	-	Y	0
o2'	(DO mode selection)	0: Output frequency (befor slip compensation) 1: Out put frequency (after slip compensation) 2: Output current 3: Output voltage 4: Output torque 5: Overload rate 6: Power consumption 7: PID feedback amount 9: DC link circuit voltage 13: Motor output 15: PID command (SV) 16: PID command (MV) 99: Individual signal output	- 	-	Y	0
-27	Transmission error (Operation selection)	0 to 15	1	-	Y	0
028	(Timer selection)	0.0 to 60.0	0.1	s	Y	0.0
030	Bus setting parameter 1	0 to 255	1	-	Y	0
031	Bus setting parameter 2	0 to 255	1	-	Y	0
-32	Bus setting parameter 3	0 to 255	1	-	Y	0
033	Bus setting parameter 4	0 to 255	1	-	Y	0
034	Bus setting parameter 5	0 to 255	1	-	Y	0
-35	Bus setting parameter 6	0 to 255	1	-	Y	0
035	Bus setting parameter 7	0 to 255	1	-	Y	0
037	Bus setting parameter 8	0 to 255	1	-	Y	0
038	Bus setting parameter 9	0 to 255	1	-	Y	0
039	Bus setting parameter 10	0 to 255	1	-	Y	0
040	Writing function code allocation 1	0000H to FFFFFH	1	-	Y	0000H
041	Writing function code allocation 2	0000H to FFFFFH	1	-	Y	0000H
042	Writing function code allocation 3	0000H to FFFFFH	1	-	Y	0000H
043	Writing function code allocation 4	0000H to FFFFFH	1	-	Y	0000H
044	Writing function code allocation 5	0000 H to FFFFFH	1	-	Y	0000H
045	Writing function code allocation 6	0000H to FFFFFH	1	-	Y	0000H
045	Writing function code allocation 7	0000H to FFFFFH	1	-	Y	0000H
047	Writing function code allocation 8	0000 H to FFFFFH	1	-	Y	0000H
048	Read function code allocation 1	0000H to FFFFFH	1	-	Y	0000H
049	Read function code allocation 2	0000H to FFFFFH	1	-	Y	0000H
050	Read function code allocation 3	0000 H to FFFFFH	1	-	Y	0000H
051	Read function code allocation 4	0000H to FFFFFH	1	-	Y	0000H
052	Read function code allocation 5	0000H to FFFFFH	1	-	Y	0000H
053	Read function code allocation 6	0000 H to FFFFFH	1	-	Y	0000H
054	Read function code allocation 7	0000 H to FFFFFH	1	-	Y	0000H
055	Read function code allocation 8	0000H to FFFFFH	1	-	Y	0000H
055	Read function code allocation 9	0000H to FFFFH	1	-	Y	0000H
057	Read function code allocation 10	0000 H to FFFFFH	1	-	Y	0000H
058	Read function code allocation 11	0000H to FFFFFH	1	-	Y	0000H
$\square 59$	Read function code allocation 12	0000 H to FFFFFH	1	-	Y	0000H

*1 When you make settings from the keypad, the incremental unit is restricted by the number of digits that the LED monitor can display.
(Example) If the setting range is from -200.00 to 200.00, the incremental unit is as follows:
"1" for -200 to -100, "0.1" for -99.9 to $-10.0, ~ " 0.01$ " for -9.99 to $-0.01, ~ " 0.01$ " for 0.00 to 99.99 , and " 0.1 " for 100.0 to 200.0
*2 Symbols in the "Data copy" column
Y: Will be copied unconditionally.
Y1: Will not be copied if the rated capacity differs from the source inverter.

Y2: Will not be copied if the rated input voltage differs from the source inverter N . Will not be copied
*3 Reserved for the maker. Do not set any data.
<Changing, validating, and saving function code data when the motor is running> \square : Impossible, \square : Possible (Change data with keys and then save/validate it with key), \square : Possible (Change and validate data with \checkmark keys and then save it with key)

Remote keypad (Standard equipment)
If the back cover packed with the inverter is mounted
and the extension cable is used, remote operation
can be performed.
Multi-function keypad (to be announced soon)
TP-G1
This multi-function keypad has a large 5-digit 7-
segment LED with backlit LCD. (It cannot be
mounted on the inverter body.)

Options

Braking resistor
Type, specifications and external dimensions
[Standard type] (DB $\square \square \square-2)$ (DB $\square \square \square-4)$ [10\% ED type] (DB $\square \square \square-2 C)$ (DB $\square \square \square-4 C)$

	Voltage		Fig	Dimensions [Unit: inch (mm)]					Mass$[\mathrm{lbs}(\mathrm{kg})]$
	230 V series	460 V series		W	W1	H	H1	D	
Standard type	DB0.75-2	DB0.75-4	A	2.52(64)	-	12.20(310)	11.61(295)	2.64(67)	2.9(1.3)
	DB2.2-2	-	A	2.99(76)	-	13.58(345)	13.07(332)	3.70(94)	4.4(2.0)
	-	DB2.2-4	A	2.52(64)	-	18.50(470) 1	17.91(455)	$2.64(67)$	4.4(2.0)
	DB3.7-2	-	A	2.99(76)	-	13.58(345)	13.07(332)	3.70(94)	4.4(2.0)
	-	DB3.7-4	A	2.52(64)	-	18.50(470) 1	17.91(455)	$2.64(67)$	3.7(1.7)
	DB5.5-2	-	B	3.54(90)	3.54(90)	17.72(450)	16.93(430)2	2.66(67.5)	9.9(4.5)
	-	DB5.5-4	B	2.91 (74)	2.91 (74)	18.50(470) 17	17.91(455)	2.64(67)	9.9(4.5)
	DB7.5-2	-	B	3.54(90)	3.54(90)	15.35(390)	14.57(370)	3.54(90)	11(5.0)
	-	DB7.5-4	B	2.91 (74)	2.91 (74)	20.47(520)	19.49(495)	$2.64(67)$	11(5.0)
	DB11-2	-	C	5.59(142)	2.91 (74)	16.93(430)	16.34(415)	6.30(160)	15(6.9)
	-	DB11-4	C	5.59(142)	2.91 (74)	16.93(430)	16.34(415)	6.30(160)	15(6.9)
	DB15-2	-	C	5.59(142)	2.91 (74)	16.93(430)	16.34(415)	6.30(160)	15(6.9)
	-	DB15-4	C	5.59(142)	2.91 (74)	16.93(430)	16.34(415)	6.30(160)	15(6.9)
$\begin{aligned} & 10 \% \text { ED } \\ & \text { type } \end{aligned}$	DB0.75-2C	DB0.75-4C	D	1.69(43)	-	8.70(221)	$8.46(215) 1$	1.20(30.5)	1.1(0.5)
	DB2.2-2C	DB2.2-4C	E	2.64(67)	-	7.40(188)	$6.77(172)$	2.17(55)	1.8(0.8)
	DB3.7-2C	DB3.7-4C	E	$2.64(67)$	-	12.91(328) 1	12.28(312)	2.17(55)	3.5(1.6)
	DB5.5-2C	DB5.5-4C	E	-	-	14.88(378)	14.25(362)	3.07(78)	6.4(2.9)
	DB7.5-2C	DB7.5-4C	E	-	-	16.46(418)	15.83(402)	3.07(78)	7.3(3.3)
	DB11-2C	DB11-4C	F	3.15(80)	$1.97(50)$	18.11(460) 1	17.32(440)	5.51 (140)	9.54.3)
	DB15-2C	DB15-4C	F	3.15(80)	1.97(50)	22.83(580)	17.32(440)	5.51 (140)	12(5.6)

Fig. $E \quad$ Fig. $F \quad \begin{aligned} & \text { R0.14 }\end{aligned}$

Power supply voltage	Applicable motor rating [HP]	Inverter type	REACTOR type	Dimensions U				Unit: inch (mm)				Mass [bs (kg)]
				W	W1	D	D1	D2	H	Mounting hole	$\begin{gathered} \text { Terminal } \\ \text { hole } \end{gathered}$	
Threephase 230 V	1/8	FRNF12E1 \square-2U	DCR2-0.2	2.60 (66)	2.20(56)	3.54(90)	2.83(72)	0.20(5)	3.70(94)	$\begin{aligned} & 0.20 \times 0.31 \\ & (5.2 \times 8) \end{aligned}$	M4	$1.8(0.8)$
	1/4	FRNF25E1 \square-2U										
	1/2	FRNF50E1 \square-2U	DCR2-0.4	2.60(66)	2.20(56)	3.54(90)	2.83(72)	0.59(15)	3.70(94)	0.20x0.31(5.2x8)	M4	2.2(1.0)
	1	FRN001E1 \square-2U	DCR2-0.75	2.60 (66)	2.20(56)	3.54(90)	2.83(72)	0.79(20)	3.70(94)	$0.20 \times 0.31(5.2 \times 8)$	M4	$3.1(1.4)$
	2	FRN002E1 \square-2U	DCR2-1.5	2.60 (66)	2.20(56)	3.54(90)	2.83(72)	0.79(20)	3.70(94)	$0.20 \times 0.31(5.2 \times 8)$	M4	3.5(1.6)
	3	FRN003E1S-2U	DCR2-2.2	3.39(86)	2.80071)	3.94(100)	3.15(80)	0.39(10)	4.33(110)	$0.24 \times 0.43(6 \times 11)$	M4	4.0(1.8)
	5	FRN005E1 \square-2U	DCR2-3.7	3.39(86)	2.80(71)	3.94(100)	3.15(80)	0.79(20)	4.33(110)	$0.24 \times 0.43(6 \times 11)$	M4	5.7(2.6)
	7.5	FRN007E1 \square-2U	DCR2-5.5	4.37(111)	3.74(95)	$3.94(100)$	3.15(80)	0.79(20)	5.12(130)	$0.24 \times 0.43(6 \times 11)$	M5	7.9(3.6)
	10	FRN010E1 \square-2U	DCR2-7.5	4.37(111)	3.74(95)	3.94(100)	3.15(80)	0.91(23)	5.12(130)	0.28x0.43(7x11)	M5	8.4(3.8)
	15	FRN015E1 \square-2U	DCR2-11	4.37(111)	3.74(95)	$3.94(100)$	3.15(80)	0.94(24)	5.39(137)	0.28x0.43(7x11)	M6	9.5(4.3)
	20	FRN020E1 \square-2U	DCR2-15	5.75(146)	4.88(124)	4.72(120)	3.78(96)	0.59(15)	7.09(180)	0.28x0.43(7x11)	M6	13(5.9)
Threephase 460V	1/2	FRNF50E1 \square-4U	DCR4-0.4	2.60 (66)	2.20(56)	3.54(90)	2.83(72)	0.59(15)	3.70(94)	$0.20 \times 0.31(5.2 \times 8)$	M4	2.2(1.0)
	1	FRN001E1 \square-4U	DCR4-0.75	2.60 (66)	2.20 (56)	3.54(90)	2.83(72)	0.79(20)	3.70(94)	$0.20 \times 0.31(5.2 \times 8)$	M4	3.1(1.4)
	2	FRN002E1 \square-4U	DCR4-1.5	2.60 (66)	2.20(56)	3.54(90)	2.83(72)	0.79(20)	3.70(94)	$0.20 \times 0.31(5.2 \times 8)$	M4	$3.5(1.6)$
	3	FRN003E1 \square-4U	DCR4-2.2	2.60 (66)	2.80071)	3.94(100)	3.15(80)	0.59(15)	4.33(110)	0.24x0.35(6x9)	M4	4.4(2.0)
	5	FRN005E1 \square-4U	DCR4-3.7	3.39(86)	2.80071)	3.94(100)	3.15(80)	0.79(20)	4.33(110)	0.24x0.35(6x9)	M4	5.7(2.6)
	7.5	FRN007E1 \square-4U	DCR4-5.5	3.39(86)	2.80(71)	3.94(100)	3.15(80)	0.79(20)	4.33(110)	$0.24 \times 0.35(6 \times 9)$	M4	5.7(2.6)
	10	FRN010E1 \square-4U	DCR4-7.5	4.37(111)	3.74(95)	3.94(100)	3.15(80)	0.94(24)	5.12(130)	$0.28 \times 0.43(7 \times 11)$	M5	9.3.(4.2)
	15	FRN015E1 \square-4U	DCR4-11	4.37(111)	3.74(95)	$3.94(100)$	3.15(80)	0.94(24)	5.12(130)	$0.28 \times 0.43(7 \times 11)$	M5	9.5(4.3)
	20	FRN020E1 \square-4U	DCR4-15	5.75(146)	4.88(124)	4.72(120)	3.78(96)	0.59(15)	6.73(171)	0.28x0.43(7x11)	M5	13(5.9)
Singlephase 230 V	1/8	FRNF12E1 \square-7U	DCR2-0.2	2.60 (66)	2.20 (56)	3.54(90)	2.83(72)	0.20(5)	3.70(94)	$0.20 \times 0.31(5.2 \times 8)$	M4	1.8(0.8)
	1/4	FRNF25E1 \square-7U	DCR2-0.4	2.60 (66)	2.20(56)	3.54(90)	2.83(72)	0.59(15)	3.70(94)	$0.20 \times 0.31(5.2 \times 8)$	M4	$2.2(1.0)$
	1/2	FRNF50E1 \square-7U	DCR2-0.75	2.60 (66)	2.20(56)	3.54(90)	2.83(72)	0.79(20)	3.70(94)	$0.20 \times 0.31(5.2 \times 8)$	M4	$3.1(1.4)$
	1	FRN001E1 \square-7U	DCR2-1.5	2.60 (66)	2.20(56)	3.54(90)	2.83(72)	0.79(20)	3.70(94)	$0.20 \times 0.31(5.2 \times 8)$	M4	$3.5(1.6)$
	2	FRN002E1 \square-7U	DCR2-2.2	3.39(86)	2.80(71)	3.94(100)	3.15(80)	0.39(10)	4.33(110)	$0.24 \times 0.43(6 \times 11)$	M4	4.0(1.8)
	3	FRN003E1 \square-7U	DCR2-3.7	3.39(86)	2.80(71)	3.94(100)	3.15(80)	0.79(20)	4.33(110)	$0.24 \times 0.43(6 \times 11)$	M4	5.7(2.6)

Multi-function keypad (TP-G1)

Connection with FRENIC-Multi using an extension cable for remote operation (optional) enables remote operation, function code data setting, monitoring, etc. from the keypad keys and panel.
The keypad is equipped with an LCD panel (with backlight) and the copy function (for three inverter data).

Extension cable for remote operation(CB-
This is used to connect the inverter and the remote keypad.

Interface card

RS-485 communication card (OPC-F1-RS)

Built-in type
Connection with a host (master) device such as PC or PLC allows you to control FRENIC-Multi as a subordinate (slave) device. (The card is added to the RS-485 communication devices for FRENIC-Multi.) NOTE: This option card cannot be connected with the keypad or a support loader.
Number of connectable devices: 1 host device and 31 inverters
Number of ports: 2 ports

- Electric specifications: EIA RS-485

Synchronization method: Start/stop

- Communication method: Half-duplex

Transmission speed (bps): 2400, 4800, 9600, 19200 and 38400
Maximum communication distance: 1600ft(500m)
Terminating resistor: Built-in

PG interface card (OPC-E1-PG) for 5V

Built-in type
When this card is built in the inverter, positioning accuracy will improve, resulting in reduced positioning time and improved measuring accuracy by the measuring instrument.

PG interface card (OPC-E1-PG3) for 12V

Built-in type Incorporating the interface card in the inverter permits accurate speed control and position control.The interface card can be used simultaneously with the communication bus for FRENIC-Multi series, optional DeviceNet card (OPC-E1-DEV), CC-Link card (OPC-E1CCL), and PROFIBUS-DP card (OPC-E1-PDP).

Front installation type External dimensions

OPC-E1-CCL,OPC-E1-DEV

DeviceNet card (OPC-E1-DEV)

Front installation type
Connection with the DeviceNet master unit permits application to the system that requires operation commands and frequency settings.

DIO card (OPC-E1-DIO)
Front installation type
This card allows frequency setting or status monitoring by exchanging digital signal data with the host controller.

SY card (synchronized operation) NOTE2)
Built-in type
Using this card allows synchronized operation of the two motors having a pulse generator (PG).

PROFIBUS-DP card (OPC-E1-PDP) Front installation type

Connection with the PROFIBUS-DP card permits application to the system that requires operation commands and frequency settings.

Note1) An external power supply of 24 V is needed to use a separately sold option card.
Note2) The inverter that can be used with the SY card includes special specifications. When ordering the SY card, please order together with the inverter in a set.

External cooling attachment

External cooling attachment (PB-E1-7.5/PB-F1-15)

This attachment allows installation of the inverter heat sink outside the panel. With this attachment, it is possible to improve the cooling effect and to make the panel more compact.

Optional type	Applicable inverter type
PB-E1-7.5	FRN007E1S-2/4U s FRN010E1S-2/4U

Compatible attachment

Compatible attachment (MA-E1- $\square \square$)

This attachment allows replacing our previous model with the new one without machining.

Optional type	Applicable inverter type	Previous inverter type
-MA-E1-0.75	FRNF12E1S-2U	FVR0.1E11S-2
	FRNF25E1S-2U	FVR0.2E11S-2
	FRNF50E1S-2U	FVR0.4E11S-2
	FRN001E1S-2U	FVR0.75E11S-2
	FRNF12E1S-7U	FVR0.1E11S-7
	FRNF25E1S-7U	FVR0.2E11S-7
	FRNF50E1S-7U	FVR0.4E11S-7
-MA-E1-3.7	FRN005E1S-2U	FVR3.7E11S-2
	FRN005E1S-4U	FVR3.7E11S-4
	FRN003E1S-7U	FVR2.2E11S-7

*The table below shows the previous and new inverters with are compatible and do not need attachment for replacement.

Applicable inverter type	Previous inverter type
FRN002E1S-2U	FVR1.5E11S-2
FRN003E1S-2U	FVR2.2E11S-2
FRNF50E1S-4U	FVR0.4E11S-4
FRN001E1S-4U	FVR0.75E11S-4
FRN002E1S-4U	FVR1.5E11S-4
FRN003E1S-4U	FVR2.2E11S-4
FRN002E1S-7U	FVR1.5E11S-7
FRN003E1S-7U	FVR2.2E11S-7
FRN007E1S-2U	FVR5.5E11S-2
FRN007E1S-4U	FVR5.5E11S-4
FRN010E1S-2U	FVR7.5E11S-2
FRN010E1S-4U	FVR7.5E11S-4

Devices requiring wiring

Power supply voltage	Applicable motor rating (HP)	Inverter type	MCCB, GFCI rated current (A)		Magnetic contactor (MC)			Recommended cable size ($\left.\mathrm{mm}^{2}\right)^{* 1}$						
					Input circuit		Output circuit	Main power input (L1/R, L2/S, L3/T)		$\begin{aligned} & \text { Inverter } \\ & \text { output } \\ & {[\mathrm{U}, \mathrm{~V}, \mathrm{~W}]} \end{aligned}$	DC Reactor[P1, P (+)]	DC Reactor$[\mathrm{P}(+), \mathrm{DB}$	For control circuit	For connection with Inverter [$\boldsymbol{*}$ G]
			With DCR	Without DCR	With DCR	Without DCR		With DCR	Without DCR					
Threephase 230 V	1/8	FRNF12E1 \square-2U	5	5	SC-05	SC-05	SC-05	2.0	2.0	2.0	2.0	2.0	$\begin{gathered} 0.75 \\ \text { to } \\ 1.25 \end{gathered}$	2.0
	1/4	FRNF25E1 \square-2U						2.0	2.0	2.0	2.0	2.0		
	1/2	FRNF50E1 \square-2U						2.0	2.0	2.0	2.0	2.0		
	1	FRN001E1 \square-2U		10				2.0	2.0	2.0	2.0	2.0		
	2	FRN002E1 \square-2U	10	15				2.0	2.0	2.0	2.0	2.0		
	3	FRN003E1 \square-2U		20				2.0	2.0	2.0	2.0	2.0		
	5	FRN005E1 \square-2U	20	30		SC-4-0		2.0	2.0	2.0	2.0	2.0		
	7.5	FRN007E1 \square-2U	30	50	SC-4-0	SC-5-1	SC-4-0	2.0	3.5	3.5	3.5	2.0		3.5
	10	FRN010E1 \square-2U	40	75	SC-5-1	SC-N1	SC-5-1	3.5	5.5	3.5	5.5	2.0		5.5
	15	FRN015E1 \square-2U	50	100	SC-N1	SC-N2S	SC-N1	5.5	14.0	8.0	8.0	2.0		
	20	FRN020E1 \square-2U	75	125	SC-N2	SC-N3	SC-N2	14.0	22.0	14.0	14.0	2.0		8.0
Threephase 460V	1/2	FRNF50E1 \square-4U	5	5	SC-05	SC-05	SC-05	2.0	2.0	2.0	2.0	2.0	$\begin{gathered} 0.75 \\ \text { to } \\ 1.25 \end{gathered}$	2.0
	1	FRN001E1 \square-4U						2.0	2.0	2.0	2.0	2.0		
	2	FRN002E1 \square-4U		10				2.0	2.0	2.0	2.0	2.0		
	3	FRN003E1 \square-4U		15				2.0	2.0	2.0	2.0	2.0		
	5	FRN005E1 \square-4U	10	20				2.0	2.0	2.0	2.0	2.0		
	7.5	FRN007E1 \square-4U	15	30				2.0	2.0	2.0	2.0	2.0		
	10	FRN010E1 $\square 4 \mathrm{U}$	20	40		SC-4-0		2.0	2.0	2.0	2.0	2.0		3.5
	15	FRN015E1 \square-4U	30	50	SC-4-0	SC-N1	SC-4-0	2.0	3.5	2.0	3.5	2.0		
	20	FRN020E1 \square-4U	40	60	SC-5-1		SC-5-1	3.5	5.5	3.5	5.5	2.0		
Singlephase 230 V	1/8	FRNF12E1 \square-7U	5	5	SC-05	SC-05	SC-05	2.0	2.0	2.0	2.0	2.0	$\begin{gathered} 0.75 \\ \text { to } \\ 1.25 \end{gathered}$	2.0
	1/4	FRNF25E1 \square-7U						2.0	2.0	2.0	2.0	2.0		
	1/2	FRNF50E1 \square-7U		10				2.0	2.0	2.0	2.0	2.0		
	1	FRN001E1 \square-7U	10	15				2.0	2.0	2.0	2.0	2.0		
	2	FRN002E1 \square-7U	15	20				2.0	2.0	2.0	2.0	2.0		
	3	FRN003E1 \square-7U	20	30		SC-5-1		2.0	3.5	2.0	2.0	2.0		

The code in \square represents followings; S: standard model, E: EMC filter built-in type
Note1) An external power supply of 24 V is needed to use a separately sold option card.
Note2) The inverter that can be used with the SY card includes special specifications. When ordering the SY card, please order together with the inverter in a set.

- The frame and series of the MCCB and GFCI models vary according to the transformer capacity and so on of the equipment. Choose the optimum ones according to the catalog and technical data of the circuit breaker and others
- Choose the optimum rated sensitive current of the ELCB according to technical data, too. The rated currents of the MCCB and GFCI specified in this table indicate those of SA $\square \mathrm{B} / \square$ and SA $\square \mathrm{R} / \square$ models.
- Description in the above table may vary for different ambient temperatures, power supply voltages or other conditions.
*1: Use crimp terminals equipped with insulation sheath or those equipped with an insulation tube or the like
The cable to be used is 600 V -insulated cable with an allowable temperature of $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$. The ambient temperature is assumed to be $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$

To all our customers who purchase
 Fuji Electric FA Components \& Systems' products:

Please take the following items into consideration when placing your order.

When requesting an estimate and placing your orders for the products included in these materials, please be aware that any items such as specifications which are not specifically mentioned in the contract, catalog, specifications or other materials will be as mentioned below.
In addition, the products included in these materials are limited in the use they are put to and the place where they can be used, etc., and may require periodic inspection. Please confirm these points with your sales representative or directly with this company.
Furthermore, regarding purchased products and delivered products, we request that you take adequate consideration of the necessity of rapid receiving inspections and of product management and maintenance even before receiving your products.

1. Free of Charge Warranty Period and Warranty Range

1-1 Free of charge warranty period

(1) The product warranty period is "1 year from the date of purchase" or 24 months from the manufacturing date imprinted on the name place, whichever date is earlier.
(2) However, in cases where the use environment, conditions of use, use frequency and times used, etc., have an effect on product life, this warranty period may not apply.
(3) Furthermore, the warranty period for parts restored by Fuji Electric's Service Department is " 6 months from the date that repairs are completed."

1-2 Warranty range

(1) In the event that breakdown occurs during the product's warranty period which is the responsibility of Fuji Electric, Fuji Electric will replace or repair the part of the product that has broken down free of charge at the place where the product was purchased or where it was delivered. However, if the following cases are applicable, the terms of this warranty may not apply.

1) The breakdown was caused by inappropriate conditions, environment, handling or use methods, etc. which are not specified in the catalog, operation manual, specifications or other relevant documents.
2) The breakdown was caused by the product other than the purchased or delivered Fuji's product.
3) The breakdown was caused by the product other than Fuji's product, such as the customer's equipment or software design, etc.
4) Concerning the Fuji's programmable products, the breakdown was caused by a program other than a program supplied by this company, or the results from using such a program.
5) The breakdown was caused by modifications or repairs affected by a party other than Fuji Electric.
6) The breakdown was caused by improper maintenance or replacement using consumables, etc. specified in the operation manual or catalog, etc.
7) The breakdown was caused by a chemical or technical problem that was not foreseen when making practical application of the product at the time it was purchased or delivered.
8) The product was not used in the manner the product was originally intended to be used.
9) The breakdown was caused by a reason which is not this company's responsibility, such as lightning or other disaster.
(2) Furthermore, the warranty specified herein shall be limited to the purchased or delivered product alone.
(3) The upper limit for the warranty range shall be as specified in item (1) above and any damages (damage to or loss of machinery or equipment, or lost profits from the same, etc.) consequent to or resulting from breakdown of the purchased or delivered product shall be excluded from coverage by this warranty.

1-3. Trouble diagnosis

As a rule, the customer is requested to carry out a preliminary trouble diagnosis. However, at the customer's request, this company or its service network can perform the trouble diagnosis on a chargeable basis. In this case, the customer is asked to assume the burden for charges levied in accordance with this company's fee schedule.
2. Exclusion of Liability for Loss of Opportunity, etc.

Regardless of whether a breakdown occurs during or after the free of charge warranty period, this company shall not be liable for any loss of opportunity, loss of profits, or damages arising from special circumstances, secondary damages, accident compensation to another company, or damages to products other than this company's products, whether foreseen or not by this company, which this company is not be responsible for causing.

3. Repair Period after Production Stop, Spare Parts Supply Period (Holding Period)

Concerning models (products) which have gone out of production, this company will perform repairs for a period of 7 years after production stop, counting from the month and year when the production stop occurs. In addition, we will continue to supply the spare parts required for repairs for a period of 7 years, counting from the month and year when the production stop occurs. However, if it is estimated that the life cycle of certain electronic and other parts is short and it will be difficult to procure or produce those parts, there may be cases where it is difficult to provide repairs or supply spare parts even within this 7 -year period. For details, please confirm at our company's business office or our service office.

4. Transfer Rights

In the case of standard products which do not include settings or adjustments in an application program, the products shall be transported to and transferred to the customer and this company shall not be responsible for local adjustments or trial operation.

5. Service Contents

The cost of purchased and delivered products does not include the cost of dispatching engineers or service costs. Depending on the request, these can be discussed separately.

6. Applicable Scope of Service

Above contents shall be assumed to apply to transactions and use of the country where you purchased the products.
Consult the local supplier or Fuji for the detail separately.

MEMO

MEMO

When running general-purpose motors

- Driving a 460V general-purpose motor

When driving a 400 V general-purpose motor with an inverter using extremely long cables, damage to the insulation of the motor may occur. Use an output circuit filter (OFL) if necessary after checking with the motor manufacturer. Fuji's motors do not require the use of output circuit filters because of their reinforced insulation.

- Torque characteristics and temperature rise When the inverter is used to run a general-purpose motor, the temperature of the motor becomes higher than when it is operated using a commercial power supply. In the low-speed range, the cooling effect will be weakened, so decrease the output torque of the motor. If constant torque is required in the low-speed range, use a Fuji inverter motor or a motor equipped with an externally powered ventilating fan.

- Vibration

When the motor is mounted to a machine, resonance may be caused by the natural frequencies, including that of the machine. Operation of a 2-pole motor at 60 Hz or more may cause abnormal vibration.

* Study use of tier coupling or dampening rubber.
* It is also recommended to use the inverter jump frequency control to avoid resonance points.

- Noise

When an inverter is used with a general-purpose motor, the motor noise level is higher than that with a commercial power supply. To reduce noise, raise carrier frequency of the inverter. High-speed operation at 60 Hz or more can also result in more noise.

When running special motors

- High-speed motors

When driving a high-speed motor while setting the frequency higher than 120 Hz , test the combination with another motor to confirm the safety of highspeed motors.

- Explosion-proof motors

When driving an explosion-proof motor with an inverter, use a combination of a motor and an inverter that has been approved in advance.

- Submersible motors and pumps

These motors have a larger rated current than general-purpose motors. Select an inverter whose rated output current is greater than that of the motor.
These motors differ from general-purpose motors in thermal characteristics. Set a low value in the thermal time constant of the motor when setting the electronic thermal facility.

- Brake motors

For motors equipped with parallel-connected brakes, their braking power must be supplied from the primary circuit (commercial power supply). If the brake power is connected to the inverter power output circuit (secondary circuit) by mistake, problems may occur.
Do not use inverters for driving motors equipped with series-connected brakes.

- Geared motors

If the power transmission mechanism uses an oil-
lubricated gearbox or speed changer/reducer, then continuous motor operation at low speed may cause poor lubrication. Avoid such operation.

- Synchronous motors

It is necessary to use software suitable for this motor type. Contact Fuji for details.

- Single-phase motors

Single-phase motors are not suitable for inverterdriven variable speed operation. Use three-phase motors.

* Even if a single-phase power supply is available, use a three-phase motor as the inverter provides three-phase output.

Environmental conditions

- Installation location

Use the inverter in a location with an ambient temperature range of -10 to $50^{\circ} \mathrm{C}\left(14\right.$ to $\left.122^{\circ} \mathrm{F}\right)$.
The inverter and braking resistor surfaces become hot under certain operating conditions. Install the inverter on nonflammable material such as metal. Ensure that the installation location meets the environmental conditions specified in "Environment" in inverter specifications.

Combination with peripheral devices

- Installing a molded case circuit breaker (MCCB)
Install a recommended molded case circuit breaker (MCCB) or a groud-fault circuit interrupter (GFCI) in the primary circuit of each inverter to protect the wiring. Ensure that the circuit breaker capacity is equivalent to or lower than the recommended capacity.
- Installing a magnetic contactor (MC) in the output (secondary) circuit
If a magnetic contactor (MC) is mounted in the inverter's secondary circuit for switching the motor to commercial power or for any other purpose, ensure that both the inverter and the motor are fully stopped before you turn the MC on or off. Remove the surge killer integrated with the MC.
- Installing a magnetic contactor (MC) in the input (primary) circuit
Do not turn the magnetic contactor (MC) in the primary circuit on or off more than once an hour as an inverter fault may result. If frequent starts or stops are required during motor operation, use FWD/REV signals.

- Protecting the motor

The electronic thermal facility of the inverter can protect the motor. The operation level and the motor type (general-purpose motor, inverter motor) should be set. For high-speed motors or water-cooled motors, set a small value for the thermal time constant to protect the motor.
If you connect the motor thermal relay to the motor with a long cable, a high-frequency current may flow into the wiring stray capacitance. This may cause the relay to trip at a current lower than the set value for the thermal relay. If this happens, lower the carrier frequency or use the output circuit filter (OFL).

- Discontinuance of power-factor correcting capacitor Do not mount power factor correcting capacitors in the inverter (primary) circuit. (Use the DC REACTOR to improve the inverter power factor.) Do
not use power factor correcting capacitors in the inverter output circuit (secondary). An overcurrent trip will occur, disabling motor operation.
- Discontinuance of surge killer Do not mount surge killers in the inverter output (secondary) circuit.

- Reducing noise

Use of a filter and shielded wires are typical measures against noise to ensure that EMC Directives are met.

- Measures against surge currents

If an overvoltage trip occurs while the inverter is stopped or operated under a light load, it is assumed that the surge current is generated by open/close of the phase-advancing capacitor in the power system.
We recommend connecting a DC REACTOR to the inverter.

- Megger test

When checking the insulation resistance of the inverter, use a 500 V megger and follow the instructions contained in the Instruction Manual.

Wiring

- Wiring distance of control circuit

When performing remote operation, use the twisted shield wire and limit the distance between the inverter and the control box to $65.6 \mathrm{ft}(20 \mathrm{~m})$.

- Wiring length between inverter and motor If long wiring is used between the inverter and the motor, the inverter will overheat or trip as a result of overcurrent (high-frequency current flowing into the stray capacitance) in the wires connected to the phases. Ensure that the wiring is shorter than $164 \mathrm{ft}(50 \mathrm{~m})$. If this length must be exceeded, lower the carrier frequency or mount an output circuit filter (OFL).

- Wiring size

Select cables with a sufficient capacity by referring to the current value or recommended wire size.

- Wiring type

Do not use multicore cables that are normally used for connecting several inverters and motors.

- Grounding

Securely ground the inverter using the grounding terminal.

Selecting inverter capacity

- Driving general-purpose motor

Select an inverter according to the applicable motor ratings listed in the standard specifications table for the inverter. When high starting torque is required or quick acceleration or deceleration is required, select an inverter with a capacity one size greater than the standard.

- Driving special motors

Select an inverter that meets the following condition: Inverter rated current > Motor rated current.

Transportation and storage

When transporting or storing inverters, follow the procedures and select locations that meet the environmental conditions that agree with the inverter specifications.

Fuji Electric FA Components \& Systems Co., Ltd. Fuji Electric Corp. of America

[^0]: * Dimensions when installing the supplied rear cover

