Θ overlv hautz motor base companv

‘AUTOMATIC"®® BASES FOR $1 / 4$ TO 500 H.P.

The 600 Series "'Automatic" Motor Base

A VERTICAL bASE SHOULD BE SPECIFIED WHERE THE RAILS OF THE BASE ARE TO BE INCLINED AT AN ANGLE OF 30° OR MORE FROM THE HORIZONTAL, AND WHERE THE MOTOR SHAFT IS HIGHER THAN THE DRIVEN SHAFT.
The 600 Series is for use with motors having a fixed diameter pulley. The 600 automatically compensates for variations in load, the expansion of belts due to centrifugal force and normally occuring belt stretch. This compensation is obtained by the unique combination of a one piece, freely movable, chatterless carriage acted upon by a spring contained within the carriage.

BASE NO.		$\begin{gathered} \text { NEMA } \\ \text { EFtume } \\ \text { Equivalent } \end{gathered}$	$\begin{array}{\|c} \text { Max } \\ \text { Motor } \\ \text { wit } \end{array}$	$\left.\begin{array}{\|c\|c\|} \hline \text { Pun } \\ \text { Pully } \\ \text { Dia. } \end{array} \right\rvert\,$	A	B	B,	c	E	Fmin.	fmax	6+ $\%$	H	J	k	ᄂ	M	wr.
Horizontal	Verical																	
601	602	48.56	50	2	6\%	5\%	6\%	\%	4\%	21/2	31/2	7	1/22	9/2	2\%	81/2	1\%	5
603	604	66	70	2	7\%	8\%	8\%	\%	5\%	4\%	5\%	8\%	12/21	11\%	2\%	10\%	1\%	6
605	606	143-145	90	2	7	8\%	8\%	\%	5\%	3\%	5\%	8\%	12,	11\% 16	3	10\%	11/3	10
607	608	182-184	110	21/2	9	9\%	9\%	\%	7\%	4\%	5\%	10\%	12/2	14\%/5	3	12\%	2\%	18
613	614	213.215	175	3	10\%	11\%	11\%	\%	812	5\%	7\%	11\%	'h,	16\%	31/2	141/2	2\%	30
621	622	254.256	280	4	12\%/	15\%	15\%/	1	10	8\%	10\%	14\%	\%	19/2	4	17\%	3\%	50
623	624	284-286	400	4/2	14	16\%	17	1	11	9\%	11\%	17	\%	22\%	5	19\%	3\%	65

The DX-900 General Purpose "Automatic" "® Motor Base

SHOCK LOADS SUCH AS FOUNDRY SHAKE-OUTS, VIBRATING FEEDERS, CRUSHERS, SHOCK LOADS SUCH AS FOUNDRY SHAKE-OUTS, VIBRATING FEEDERS, CRUSHERS,
VIBRATING SCREENS AND SIMILAR TYPES OF EQUIPMENT A SERIES DD. 1100 BASE

The DX-900 Series is for use with motors having a fixed diameter pulley. The accompanying chart lists information on Horsepower rating and minimum pulley diameter for determining the correct base. The 900 Series can be depended upon to give excellent performance where pumps, compressors, fans, blowers and similar types of equipment are involved.

The 700 Series "Automatic"® Motor Base

The 700 Series is for use with motors equipped with spring loaded variable-pitch pulleys on which one or both flanges are movable and where the driven pulley is grooved or has a standard flat. Where one flange is movable, the driven pulley should have a wide flat-not crowned.

Use the 800 Series with pulleys with one flange movable with either a standard or grooved driven pulley.

The 700/800 series is designed to quickly and easily move the motor, during operation, to increase or decrease the center distance between pulleys.

BASE NO.			$\begin{array}{\|c\|} \hline \text { Max. } \\ \text { Motor } \\ \text { Wt. } \\ \hline \end{array}$	A	B	8,	C	0	E	F.	F_{2}	$6 \pm 1 / 2$	H	k	L	M	N	P	0	R
Horizontal	Vertical																			
701		56	50	6\%	5\%	61/8	1/2		4/6	21/2	31/2	9\%	'1/2	41/	10\%	11/1	\%	\%/16	\%/6	\%/6
703		66	70	7\%	81/3	8\%	\%		5\%	4\%	5\%	11	11_{12}	4\%	121/2	1\%/8	\%	\%/6	\% 16	\%/8
705		143-145	90	7	8\%	81/2	\%		51/2	31/9	5\%	10\%	12/ ${ }^{12}$	5	12\%	1\%	1/18	\%/15	1/15	\%/5
707		182-184	110	9	9\%	9\%\%	\% $/$		71/2	4\%	5\%	131/2	12/32	5\%	15\%	$2 \%_{2}$	1/32	$\%$	\% 1	1/22
713		213-215	175	101/2	11\%	11\%	1/8		81/2	5\%	7\%	14\%	12 2_{2}	6	17	2\% 16	1/15	19/16	1	\%/15
721		254-256	280	$121 / 2$	15%	151/2	1		10	8\%	10\%	17\%	9/6	7	201/2	31/6	1\%	1\%	1\%	1/2
723		284-286	400	14	16\%	17	1		11	9\%	11\%	20	$\%$	8	22\%	$3 \%_{2}$	12%	1\%	11/4	1/62
725	726	324.326	600	18\%	18\%	191/8	1	11	121/2	101/2	12	231/2	11/6	7\%	27	5\%/2	3\%	$\begin{array}{\|l\|} \hline 1 \% \\ \hline 21 / 2 \\ \hline \end{array}$	1\%	2\%

Notes:
(1) SIZE 725 has one adjusting Schew. SIZE 726 has two AdJusting schews connecteo by a chain adjusing screws are normally EOUIPPED WITH HEAVY HEX NUTS. CRANKS WILL BE PROVIDED ONLY WHEN REOUESTEO. AND AT AN ADOITTONAL COST.
(2) FOR INSTALLAIIONS REOUIRING AUTOMATIC MOTION CONTROL. WHERE THE AOJUSIING SCREW IS ROTATEO BY A MOTOR, SEE OUR BULLETIN FOR (3) BASES FOR LARGER
afe described in outors are built to order. bases for motors eouipped with variable pitch pulleys having one movable flange ARE DESCRIBED IN OUR BULLETIN FOR THE BOO-SERIES

The Series DD-1100 Heavy Duty "Automatic"® Motor Base

The DD-1100 Series is for use with motors having a fixed diameter pulley. This series should be specified where heavy shock loads or vibration is generated, such as Rock Crushers, Vibrating Feeders or Screens, Foundry Shake-outs and similar equipment. Motors as large as 500 HP have been successfully mounted on these bases.

base no.		$\begin{array}{c\|} \hline \text { NEMA } \\ \text { Frame } \\ \text { Equivalent } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Capacity } \\ \text { HP © } 1800 \text { or } \\ \text { Equivalent } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Min. } \\ \text { Pulley } \\ \text { Dia. } \\ \hline \end{array}$	A	A,	B	0	E	F,	F_{1}	G	H	k	t	M	R	s	WT.
Horizontal	Vertical																		
DD1113		213.215	10	4	10\%	13\%	13\%	6\%	81/2	51/2	7	21\%	17/2	5\%	24	3\%	\%	2\%	60
	DD1114																		70
DD1121		254.256	20	4/2	12/2	15\%	161/2	91/2	10	81/4	10	24\%	\%/16	6\%	27	3\%	\%	2\%	75
	DD1122																		80
DD1123		284-286	30	51/2	14	16\%	17\%	10\%	11	91/2	11	26	\%/6	7	28\%	31/6	13/6.	2\%	90
	DD1124																		100
DD1125		324.326	50	7	16	18\%	191/2	11	12\%	10\%	12	28/2	11/18	6\%	31	4/6	1\%	2\%/	155
	DD1126																		175
DD1127		364-365	75	9	18	20\%	20	12	14	11\%	12\%	30\%	1/10	6\%	33	4\%	1\%/	21/6	185
	DD1128																		195
DD1129		404.405	100	10	20	221/2	221/4	13	16	12\%	13%	33	1\%10	7	35\%	4\% 10	1\%10	3\%	245
	DD1130																		270
DD1131		444.445	150	11	22	24\%	24\%	15\%	18	14/2	161/2	35	1\%/10	7\%	37\%	4\% He	1\%10	3	320
	DD1132																		360
DD1133		447	200	11	22	24/2	27\%	20	18	20		35	'1/10	7	37\%	4\%,	1\%	\%	450
	DD1134											80							

Motor Mounting Positions

The Proper Application of an "Automatic"© Motor Base:

- Eliminates many sources of machine down time.
- Continuously maintains the rated speed of the driven equipment.
- Results in a substantial increase in belt life.
- Eliminates one of the main causes of bearing failures in motors.
We are sure that you will see the advantages of our Automatic motor bases when you recognize that they:
- May be mounted in any position, floor, ceiling, or sidewall with the motor shaft vertical or horizontal.
- Will allow motor rotation to be clockwise
or counterclockwise maintaining constant belt tension.
- Are a must for areas that are not readily accessible.
- Adjustments to provide proper tension are made while the motor is operating under load.
- Can be used in "shock loaded" situations.
- Have a one piece carriage resulting in a non-binding smooth movement.
- Compact design-less space required than tilting or pivoting bases.
- Are low cost when considering the time saved by maintenance personnel, extended life of belts and bearings and greater uptime of the equipment on which they are used.

We pioneered the concept of fabricated motor bases and rails over 35 years ago. With the addition of our Adapt-O-Mounts (transition bases), Sugar Scoops and now the "Automatic"© Motor Base, we have the world's most complete line of motor mounting products-and most of these are in stock!
We will quickly provide "specials" to your design or we will design to your specifications.

